基于yolov8的车牌检测训练全流程

在这里插入图片描述
YOLOv8 是Ultralytics的YOLO的最新版本。作为一种前沿、最先进(SOTA)的模型,YOLOv8在之前版本的成功基础上引入了新功能和改进,以提高性能、灵活性和效率。YOLOv8支持全范围的视觉AI任务,包括检测, 分割, 姿态估计, 跟踪, 和分类。这种多功能性使用户能够利用YOLOv8的功能应对多种应用和领域的需求。

代码地址:https://github.com/ultralytics/ultralytics

一、数据集预处理

yolov8的数据集格式处理可以参考我的这篇博客:yolo系列模型训练数据集全流程制作方法(附数据增强代码)
这里就不再详细讲述,处理完并划分训练集和验证集后格式为下:

- mydata
  |- train
  |  |- images
  |  |- labels
  |
  |- val
  |  |- images
  |  |- labels

处理完以后,自己创建一个mydata.yaml文件,文件内容如下:

train: mydata/train/images
val: mydata/val/images
#如果按照上述方式建立文件夹,则上面train、test和val地址可以不变

nc: 8         #标签类别个数
names: ['0', '1', '2', '3', '4', '5', '6', '7']    #标签名
#上面nc和names可以根据自己的数据集进行修改

然后将mydata.yaml直接放到yolov8代码的主目录下即可,即./ultralytics-main下。
在这里插入图片描述

二、训练

使用yolov8的小伙伴可以发现,yolov8同v5、v7不太一样,里面的文件代码路径什么的都发生了很大的变化,所以刚上手可能会觉得非常的不知所措。但是,其实v8训练起来同前面的版本相比更加简单,可以直接用yolo命令进行训练。

首先,我们需要安装 ultralytics 这个库。

pip install ultralytics

然后直接使用下面的指令在命令行进行单卡训练即可:

yolo task=detect mode=train model=yolov8n.pt data=mydata.yaml batch=32 epochs=100 imgsz=640 workers=16 device=0

注意:
1. 如果是在windows系统中训练yolov8的话,worker设置成0,如果是Linux或服务器的话,就可以设置成8或16等。
2. 如果训练过程中报了路径的错误,那么就将mydata.yaml改为绝对路径。

训练成功如下图所示:
在这里插入图片描述

如果你有服务器,想要进行多卡训练,则使用下面的命令:

yolo task=detect mode=train model=yolov8n.pt data=mydata.yaml batch=32 epochs=100 imgsz=640 workers=16 device=\'0,1,2,3\'

三、验证

在训练完以后,我们可以使用验证集对模型的性能进行一个验证,具体命令如下:

yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=mydata.yaml device=0

四、预测

对图片进行预测的代码如下:

yolo task=detect mode=predict model=runs/detect/train/weights/best.pt source=inferdata device=0

如果想要将检测的结果导出labels的txt文件的话,命令如下:

yolo task=detect mode=predict model=runs/detect/train/weights/best.pt source=inferdata save_txt=True device=0

对模糊图片的检测结果如下:
在这里插入图片描述

五、导出ONNX模型

导出onnx的代码如下:

yolo task=detect mode=export model=runs/detect/train/weights/best.pt format=onnx

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/168746.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

多目标应用:基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度(MATLAB)

一、微网系统运行优化模型 微电网优化模型介绍: 微电网多目标优化调度模型简介_IT猿手的博客-CSDN博客 二、基于非支配排序的蜣螂优化算法NSDBO 基于非支配排序的蜣螂优化算法NSDBO简介: https://blog.csdn.net/weixin46204734/article/details/128…

【LCM(潜在一致性模型)-5步即可高质量出图】

https://tianfeng.space/ 前言 由潜在一致性模型 (LCM) 生成的图像。LCM 只需 4,000 个训练步骤(约 32 个 A100 GPU 小时)即可从任何预训练的稳定扩散 (SD) 中提取出来,只需 2~4 个步骤甚至一步即可生成高质量的 768 x 768 分辨率图像&…

数据结构与算法 | 图(Graph)

图的分类(Types Of Graph) 可以看到图的基本的结构非常简单,约束也很少,如果在其中加上各种条件约束就可以定义各种类型的图。 约束边或者顶点个数来分类: 零图(Null graph):只有顶…

指令系统、流水线

指令系统 分类 寻址方式 设计 能够改变控制流的指令:分支、跳转、过程调用、过程返回 操作码设计 MIPS 流水线 MIPS流水线 改进后 取指(IF) 译码(ID) 执行(EX) 存储器访问 寄存器-寄存器 A…

LabVIEW如何获取波形图上游标所在位置的数值

LabVIEW如何获取波形图上游标所在位置的数值 获取游标所在位置数值的一种方法是利用波形图的游标列表属性。 在VI的程序框图中,右键单击波形图并选择创建引用 ,然后将创建的引用节点放在程序框图上。 在程序框图上放置一个属性节点,并将其…

Java制作俄罗斯方块

Java俄罗斯方块小游戏 import javax.swing.*; import java.awt.*; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.KeyEvent; import java.awt.event.KeyListener; import java.util.ArrayList; import java.util.List; imp…

open3d ICP 配准

文章目录 Three common registration techniquesPoint-to-point techniquePoint-to-plane registration ICP registrationHelper visualization functionInputGlobal registrationExtract geometric featureInputRANSAC Point-to-point ICPPoint-to-plane ICP References Three…

搭建Android自动化python+appium环境

一. 需要软件 JDK:JAVA安装后配置JDK环境 SDK:SDK下载后配置adb环境 Python:pyhton语言 Pycharm:python脚本编译工具 Appium-python-client:pyhton中的库Appium客户端 二. 搭建步骤 1.配置JDK环境 ①. 下载安装java: https://www.oracle.com/java/technologies/javase-j…

语音特征提取: 梅尔频谱(Mel-spectrogram)与梅尔倒频系数(MFCCS)

1 核心概念 1.1 语音信号 语音信号是一个非平稳的时变信号,但语音信号是由声门的激励脉冲通过声道形成的,经过声道(人的三腔,咽口鼻)的调制,最后由口唇辐射而出。认为“短时间”(帧长/窗长:10~30ms)内语音信号是平稳…

Unity中Shader法线贴图(下)理论篇

文章目录 前言一、采样出错的原因二、切线空间是什么?切线空间图解: 三、计算方式1、统一变换到切线空间下进行计算2、统一变换到世界空间下进行计算 四、一般统一变换到世界空间下的坐标进行计算1、求M^-1^2、求出n~w~ 前言 这篇文章,主要解…

【Kettle实战】字符串处理及网络请求JSON格式处理

经过大量的kettle操作实践,我们会渐渐掌握一些技巧,大大减轻清洗的工作量。比如在哪里 处理字符串更方便,在哪儿处理更合理都是一个取舍问题。 字符串拼接 MySQL中使用concat(字段1,字段2),但是如果“字段2”为NULL,结…

如何挖掘xss漏洞

如何挖掘xss漏洞 对于如何去挖掘一个xss漏洞我是这样理解的 在实战情况下不能一上来就使用xss语句来进行测试很容易被发现 那这种情况该怎么办呢 打开准备渗透测试的web网站,寻找可以收集用户输入的地方比如搜索框,url框等 发现后寻找注入点 选在输入…

【Q1—45min】

1.epoll除了边沿触发还有什么?与select区别. epoll 是Linux平台下的一种特有的多路复用IO实现方式,与传统的 select 相比,epoll 在性能上有很大的提升。 epoll是一种当文件描述符的内核缓冲区非空的时候,发出可读信号进行通知&…

Find My蓝牙耳机|苹果Find My技术与耳机结合,智能防丢,全球定位

蓝牙耳机就是将蓝牙技术应用在免持耳机上,让使用者可以免除恼人电线的牵绊,自在地以各种方式轻松通话。自从蓝牙耳机问世以来,一直是行动商务族提升效率的好工具。正是应为蓝牙耳机小巧无线,人们越来越喜欢随身携带蓝牙耳机出门&a…

人民网_领导留言板data2022年-2023年

人民网_领导留言板data_2022年全年-2023年11月数据_全国任意城市 包含且不限于:留言ID,留言对象,留言标题,种类名,领域名,目前状态,留言日期,留言内容,回复机构,回复时间,回复内容,满意度,解决力度,沟通态度,办理时效 对于有需要爬取领导留言板的朋友,…

【Qt开发流程之】布局管理

介绍 一个界面呈现,如果要让用户有更好的观感,布局必不可少。 【Qt之布局】QVBoxLayout、QHBoxLayout、QGridLayout、QFormLayout介绍及使用 链接: https://blog.csdn.net/MrHHHHHH/article/details/133915208 qt布局类图: Qt布局是Qt图形…

echarts的使用

1. 普通版 其实主要就是option1&#xff0c;option1就是画的图 echats不能响应刷新&#xff0c;要想实时刷新监听刷新的值重新调用一下方法即可 html <div class"echart" style"width: 100%;height: calc(100% - 130px)" ref"main1">&l…

生物医药行业密钥管理系统特点 安当加密

生物医药行业密钥管理系统的特点主要表现在以下几个方面&#xff1a; 安全性&#xff1a;生物医药行业涉及的数据往往具有极高的私密性和敏感性&#xff0c;因此&#xff0c;密钥管理系统必须具备极高的安全性。这包括对密钥的生成、存储、传输和使用等各个环节进行严格的管理和…

广州一母婴店因设置0元购导致关店

我是卢松松&#xff0c;点点上面的头像&#xff0c;欢迎关注我哦&#xff01; 广州的一家母婴用品网店Minitutu因双十一优惠券设置错误&#xff0c;导致所有商品变成0元购买&#xff0c;引发消费者疯狂抢购&#xff0c;15万多单订单中有800多万元的损失。店家无奈之下只能暂停营…

亚马逊,shopee,lazada自养号测评:提高店铺曝光,增加产品销量

如何在较短的时间内让自己的店铺排名升高&#xff0c;提高产品销量&#xff0c;除了依靠选品和广告之外&#xff0c;亚马逊测评 在店铺的运营中也是必不可少的环节。 自养号测评对亚马逊卖家来说&#xff0c;是运营店铺的重要手段之一。一个产品想要有更好的曝光、更高的转化率…