【数据结构】——双链表(增删查改)

 

目录

前言:

一:双链表的定义

​编辑 二:双向链表的实现

2.1:链表的构造

2.2:创建头节点

2.3:创建节点 

2.4:链表的尾插 

2.5:链表的打印

2.6:链表的尾删

2.7:链表的头插

2.8:链表的头删

2.9:链表的查找 

2.10:在目标位置前面插入

2.11:删除目标位置结点

2.12:链表的销毁

 总代码:

test.c

List.c

 List.h


 

前言:

双链表的引入是因为单链表要访问某个结点的前驱结点时,只能从头开始遍历,访问后驱结点的复杂度为O(1),访问前驱结点的复杂度为O(n)。为了克服上述缺点,引入了双链表。

双链表的引进,对于链表的操作有了极大的遍历;

一:双链表的定义

链表由单向的链变成了双向链。

双向链表(double linked list)是在单链表的每个结点中再设置一个指向其前驱结点的指针域。 

 二:双向链表的实现

2.1:链表的构造

包含了一个数据域,两个指针域(指向前后驱节点)

// 带头+双向+循环链表增删查改实现
typedef int LTDataType;
typedef struct ListNode
{
	LTDataType data;		//数据
	struct ListNode* next;	//下一个指针域
	struct ListNode* prev;	//上一个指针域
}ListNode;

 

2.2:创建头节点

双向链表一般都是带头节点的,在链表中,带了头节点对于链表分割这一问题有了简单化;

动态开辟出一块空间,前后指针都指向自己;

//初始化链表头头节点
ListNode* ListInit()
{
	 ListNode* phead = (ListNode*)malloc(sizeof(ListNode));
	 assert(phead);
	 phead->data = -1;
	 phead->next = phead;
	 phead->prev = phead;
	 return phead;
}

2.3:创建节点 

这里置NULL,和单链表的置NULL,是一样的意思,对后续的操作提供便利;

// 创建返回链表的结点.
ListNode* ListCreate(LTDataType x)
{
	 ListNode* newnode = (ListNode*)malloc(sizeof(ListNode));
	 assert(newnode);
	 newnode->data = x;
	 newnode->next = NULL;
	 newnode->prev = NULL;
	 return newnode;
}

2.4:链表的尾插 

单链表的尾插还需要考虑是否存在第一个节点,这里直接插入即可;

注意操作顺序

// 双向链表尾插
void ListPushBack(ListNode* phead, LTDataType x)
{
	assert(phead);
	ListNode* newnode = ListCreate(x);

	struct ListNode* tail = phead->prev;
	// phead tail  newnode

	//newnode->prev = phead->prev;
	//newnode->next = phead;
	//phead->prev->next = newnode;
	//phead->prev = newnode;

	//注意前后顺序
	newnode->prev = tail;
	tail->next = newnode;
	newnode->next = phead;
	phead->prev = newnode;

}

2.5:链表的打印

这里的关键就是从哪里开始?如何判断结束(因为是循环)?

我们可以从头结点的下一个开始打印,当遇到头结点即是结束;

// 双向链表打印
void ListPrint(ListNode* phead)
{
	assert(phead);
	struct ListNode* cur = phead->next;
	printf("哨兵位<=>");
	while (cur != phead)
	{
		printf("%d<=>", cur->data);
		cur = cur->next;
	}
	printf("\n");
}

 

2.6:链表的尾删

要多一个断言判断:如果只有一个头指针就不用操作了;

保存尾结点的前驱,释放尾结点即可

// 双向链表尾删
void ListPopBack(ListNode* phead)
{
	assert(phead);
	assert(phead->next != phead);	//只有头指针不删

	struct ListNode* cur = phead->prev;
	struct ListNode* curPrev = cur->prev;	//尾节点的上一个
	phead->prev = curPrev;
	curPrev->next = phead;
	free(cur);
	cur = NULL;
}

 

2.7:链表的头插

和尾插操作相似,定义头节点的下一个结点,进行链接即可;

注意顺序;

// 双向链表头插
void ListPushFront(ListNode* phead, LTDataType x)
{
	assert(phead);

	ListNode* newnode = ListCreate(x);
	struct ListNode* cur = phead->next;

	newnode->next = cur;	
	cur->prev = newnode;
	newnode->prev = phead;
	phead->next = newnode;
}

 

2.8:链表的头删

删除操作一般都需要判断一下是否只有头节点。判断双向链表的条件是:phead->next != phead;

// 双向链表头删
void ListPopFront(ListNode* phead)
{
	assert(phead);
	assert(phead->next != phead);	//只有头指针不删

	ListNode* cur = phead->next;
	ListNode* next = cur->next;

	phead->next = next;
	next->prev = phead;

	free(cur);
	cur = NULL;
}

2.9:链表的查找 

找到该结点后,返回的是指针,而不是数据,返回该指针位置,方便后续操作

// 双向链表查找
ListNode* ListFind(ListNode* phead, LTDataType x)
{
	assert(phead);
	
	ListNode* cur = phead->next;
	while (cur != phead)
	{
		if (cur->data == x)
			return cur;
		cur = cur->next;
	}
	return NULL;
}

2.10:在目标位置前面插入

// 双向链表在pos的前面进行插入
void ListInsert(ListNode* pos, LTDataType x)
{
	assert(pos);	//检查pos位置是否有效
	ListNode* newnode = ListCreate(x);

	newnode->next = pos;	//将newnode节点next prev 链接前后节点
	newnode->prev = pos->prev;
	pos->prev->next = newnode;
	pos->prev = newnode;
}

 

2.11:删除目标位置结点

// 双向链表删除pos位置的节点
void ListErase(ListNode* pos)
{
	assert(pos);
	
	ListNode* posPrev = pos->prev;
	ListNode* next = pos->next;

	posPrev->next = next;
	next->prev = posPrev;
	free(pos);
	pos = NULL;
}

 

2.12:链表的销毁

// 双向链表销毁
void ListDestory(ListNode* phead)
{
	assert(phead);
	ListNode* cur = phead->prev;
	while (cur != phead)		//将除了头结点的都销毁
	{
		ListNode* curPrev = cur->prev;
		free(cur);
		cur = curPrev;
	}
	free(phead);    //再释放头结点
	//phead = NULL;
}

 总代码:

test.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"List.h"


void test1()
{
	ListNode* plist = NULL;
	plist = ListInit();
	ListPushBack(plist, 1);
	ListPushBack(plist, 2);
	ListPushBack(plist, 3);
	ListPushBack(plist, 4);
	ListPrint(plist);

	ListPopBack(plist);
	ListPrint(plist);

	ListPopBack(plist);
	ListPrint(plist);

	ListPopBack(plist);
	ListPrint(plist);

	ListPopBack(plist);
	ListPrint(plist);

}


void test2()
{
	ListNode* plist = NULL;
	plist = ListInit();

	ListPrint(plist);
	//ͷ
	ListPushFront(plist, 6);
	ListPrint(plist);

	//ͷɾ
	ListPopFront(plist);
	ListPrint(plist);

}

void test3()
{
	ListNode* plist = NULL;
	plist = ListInit();
	ListPushBack(plist, 1);
	ListPushBack(plist, 2);
	ListPushBack(plist, 3);
	ListPushBack(plist, 4);
	ListPrint(plist);
		
	//βɾ
	ListPopBack(plist);
	ListPopBack(plist);
	ListPopBack(plist);

	ListNode* pos = ListFind(plist,1);

	ListInsert(pos, 666);
	ListPrint(plist);

	ListErase(pos);
	ListPrint(plist);

	ListDestory(plist);
}
int main()
{
	//test1();
	//test2();
	test3();
	return 0;
}

List.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"List.h"


//初始化链表头头节点
ListNode* ListInit()
{
	 ListNode* phead = (ListNode*)malloc(sizeof(ListNode));
	 assert(phead);
	 phead->data = -1;
	 phead->next = phead;
	 phead->prev = phead;
	 return phead;
}

// 创建返回链表的头结点.
ListNode* ListCreate(LTDataType x)
{
	 ListNode* newnode = (ListNode*)malloc(sizeof(ListNode));
	 assert(newnode);
	 newnode->data = x;
	 newnode->next = NULL;
	 newnode->prev = NULL;
	 return newnode;
}

// 双向链表尾插
void ListPushBack(ListNode* phead, LTDataType x)
{
	assert(phead);
	ListNode* newnode = ListCreate(x);

	struct ListNode* tail = phead->prev;
	// phead tail  newnode

	//newnode->prev = phead->prev;
	//newnode->next = phead;
	//phead->prev->next = newnode;
	//phead->prev = newnode;

	//注意前后顺序
	newnode->prev = tail;
	tail->next = newnode;
	newnode->next = phead;
	phead->prev = newnode;

}

// 双向链表打印
void ListPrint(ListNode* phead)
{
	assert(phead);
	struct ListNode* cur = phead->next;
	printf("哨兵位<=>");
	while (cur != phead)
	{
		printf("%d<=>", cur->data);
		cur = cur->next;
	}
	printf("\n");
}

// 双向链表尾删
void ListPopBack(ListNode* phead)
{
	assert(phead);
	assert(phead->next != phead);	//只有头指针不删

	struct ListNode* cur = phead->prev;
	struct ListNode* curPrev = cur->prev;	//尾节点的上一个
	phead->prev = curPrev;
	curPrev->next = phead;
	free(cur);
	cur = NULL;
}

// 双向链表头插
void ListPushFront(ListNode* phead, LTDataType x)
{
	assert(phead);

	ListNode* newnode = ListCreate(x);
	struct ListNode* cur = phead->next;

	newnode->next = cur;	
	cur->prev = newnode;
	newnode->prev = phead;
	phead->next = newnode;
}

// 双向链表头删
void ListPopFront(ListNode* phead)
{
	assert(phead);
	assert(phead->next != phead);	//只有头指针不删

	ListNode* cur = phead->next;
	ListNode* next = cur->next;

	phead->next = next;
	next->prev = phead;

	free(cur);
	cur = NULL;
}

// 双向链表查找
ListNode* ListFind(ListNode* phead, LTDataType x)
{
	assert(phead);
	
	ListNode* cur = phead->next;
	while (cur != phead)
	{
		if (cur->data == x)
			return cur;
		cur = cur->next;
	}
	return NULL;
}

// 双向链表在pos的前面进行插入
void ListInsert(ListNode* pos, LTDataType x)
{
	assert(pos);	//检查pos位置是否有效
	ListNode* newnode = ListCreate(x);

	newnode->next = pos;	//将newnode节点next prev 链接前后节点
	newnode->prev = pos->prev;
	pos->prev->next = newnode;
	pos->prev = newnode;
}

// 双向链表删除pos位置的节点
void ListErase(ListNode* pos)
{
	assert(pos);
	
	ListNode* posPrev = pos->prev;
	ListNode* next = pos->next;

	posPrev->next = next;
	next->prev = posPrev;
	free(pos);
	pos = NULL;
}

// 双向链表销毁
void ListDestory(ListNode* phead)
{
	assert(phead);
	ListNode* cur = phead->prev;
	while (cur != phead)		//将除了头节点的都销毁
	{
		ListNode* curPrev = cur->prev;
		free(cur);
		cur = curPrev;
	}
	free(phead);
	//phead = NULL;
}

 List.h

#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>

// 带头+双向+循环链表增删查改实现
typedef int LTDataType;
typedef struct ListNode
{
	LTDataType data;		//数据
	struct ListNode* next;	//下一个指针域
	struct ListNode* prev;	//上一个指针域
}ListNode;

// 创建返回链表的头结点.
ListNode* ListCreate(LTDataType x);

//初始化链表头头节点
ListNode* ListInit();

// 双向链表尾插
void ListPushBack(ListNode* pHead, LTDataType x);

// 双向链表打印
void ListPrint(ListNode* pHead);

// 双向链表尾删
void ListPopBack(ListNode* pHead);

// 双向链表头插
void ListPushFront(ListNode* pHead, LTDataType x);

// 双向链表头删
void ListPopFront(ListNode* pHead);

// 双向链表查找
ListNode* ListFind(ListNode* pHead, LTDataType x);

// 双向链表在pos的前面进行插入
void ListInsert(ListNode* pos, LTDataType x);

// 双向链表删除pos位置的节点
void ListErase(ListNode* pos);

// 双向链表销毁
void ListDestory(ListNode* pHead);

 以上就是我对【数据结构|双向链表|增删改查】的介绍,不足之处,还望指点。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/168453.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++百宝箱】语法总结:引用 | 内联函数 | auto | 范围for循环

&#x1f6a9;纸上得来终觉浅&#xff0c; 绝知此事要躬行。 &#x1f31f;主页&#xff1a;June-Frost &#x1f680;专栏&#xff1a;C入门宝典 &#x1f525;本文主要探讨C的语法&#xff0c;并深入了解C如何针对C语言中存在的不合理之处进行优化改进。 目录&#xff1a; ⌛…

数据资产入表规划演示(无形资产路线)

数据“入表”有利于企业盘活数据资产、数据资产的交易定价等&#xff0c;通过数据资产“入表”可以加快数据要素市场化配置&#xff0c;为下一步全国数据市场要素市场建立提供基础支撑。数据资产入表&#xff0c;可以拆解为三步&#xff0c;第一步是入表形成原始资产&#xff0…

机器学习的概念和类型

1、人工智能、机器学习、深度学习之间的关系 人工智能&#xff08;AI&#xff09;是广泛的概念&#xff0c;指赋予计算机智能特性。机器学习&#xff08;ML&#xff09;是AI的一个分支&#xff0c;是指通过计算机学习和改进性能。深度学习&#xff08;DL&#xff09;是ML的一类…

IP地理位置定位技术:保护网络安全的新利器

随着互联网的普及和网络活动的日益频繁&#xff0c;网络安全问题越来越受到人们的关注。恶意流量攻击、网络欺诈等网络安全威胁层出不穷&#xff0c;如何准确识别和定位网络攻击者成为一项重要任务。在这个背景下&#xff0c;IP地理位置定位技术应运而生&#xff0c;为网络安全…

Sam Altman 或回归 OpenAI;格力 1.3 万研发人员没有海归派 外国人丨 RTE 开发者日报 Vol.86

开发者朋友们大家好&#xff1a; 这里是 「RTE 开发者日报」 &#xff0c;每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享 RTE &#xff08;Real Time Engagement&#xff09; 领域内「有话题的 新闻 」、「有态度的 观点 」、「有意思的 数据 」、「有思考的 文…

Databend 开源周报第 120 期

Databend 是一款现代云数仓。专为弹性和高效设计&#xff0c;为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务&#xff1a;https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展&#xff0c;遇到更贴近你心意的 Databend 。 使用自定义 CON…

PIL中ImageFilter模块几种图片滤波处理和使用方法

PIL中ImageFilter模块几种图片滤波处理和使用方法 1 关于PIL库1.1 PIL简单介绍1.2 常见PIL子库或类 2 ImageFilter模块滤波处理2.1 图片轮廓2.2 浮雕效果2.3 边缘增强2.4 图片模糊2.5 细节增强2.6 不同灰度边缘增强2.7 寻找边缘信息2.8 平滑处理2.9 深度平滑处理2.10 锐化处理 …

百分点科技|怎样做数据运营,才能让数据中台真正用起来?

导读&#xff1a;大多数企业用户已完成数据平台初步建设工作&#xff0c;但数据在业务运营和管理中没有发挥应有价值。数据开发工作繁重&#xff0c;数据质量问题严重&#xff0c;IT、数据和业务协作不畅&#xff0c;诸多问题依然困扰着企业用户的IT部门和数据部门。数据运营成…

如何通过cpolar内网穿透工具实现远程访问本地postgreSQL

文章目录 前言1. 安装postgreSQL2. 本地连接postgreSQL3. Windows 安装 cpolar4. 配置postgreSQL公网地址5. 公网postgreSQL访问6. 固定连接公网地址7. postgreSQL固定地址连接测试 前言 PostgreSQL是一个功能非常强大的关系型数据库管理系统&#xff08;RDBMS&#xff09;,下…

77基于matlab的蚁群优化路径算法,二维路径和三维路径优化

基于matlab的蚁群优化路径算法&#xff0c;二维路径和三维路径优化。输出可视化最优路径和距离迭代曲线。数据可更换自己的&#xff0c;程序已调通&#xff0c;可直接运行。 77三维和二维路径可视化 (xiaohongshu.com)

rotation matrix reflection matrix

文章目录 1. rotation matrix1.1 结论 2. reflection matrix2.1 结论 1. rotation matrix 图像逆时针旋转 θ \theta θ的矩阵 Q r o t a t e [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] (1) Q_{rotate}\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\c…

Unity中Shader法线贴图(下)实现篇

文章目录 前言一、回顾一下上一篇中公式二、在Shader中实现1.appdata中定义NORMAL与TANGENT语义.2.v2f中声明三个变量用于组成成切线空间下的旋转矩阵.3.在顶点着色器中执行:4.在片断着色器中计算出世界空间下的法线,然后再拿去进行需要的计算: 三、最终效果 前言 我们在这篇文…

NLP | SimKGC论文详解及项目实现

本文主要讲解了论文SimKGC&#xff1a;基于预训练语言模型的简单对比KGC的论文总结以及项目实现。 论文题目&#xff1a;2022_SimKGC: Simple Contrastive Knowledge Graph Completion with Pre-trained Language Models 论文地址&#xff1a;2022.acl-long.295.pdf (aclanthol…

开源集群管理系统对比分析:Kubernetes 与 Apache Mesos

集群管理系统是关键的软件解决方案&#xff0c;可以在互连机器网络中有效分配和利用计算资源。毫无疑问&#xff0c;它们通过确保可扩展性、高可用性和有效的资源管理在现代计算中发挥着至关重要的作用&#xff0c;这使得它们对于运行复杂的应用程序、管理数据中心以及进一步增…

java 实现发送邮箱,复制即用,包含邮箱设置第三方登录授权码获取方法

application.yml spring:profiles:active: dev # active: test#邮件附件上传文件大小限制servlet:multipart:max-file-size: 50MB #单个文件大小限制max-request-size: 100MB #总文件大小限制&#xff08;允许存储文件的文件夹大小&#xff09;mail:default-encoding: UTF…

Java集合大总结——Set的简单使用

Set的简单介绍 Set接口是Collection的子接口&#xff0c;Set接口相较于Collection接口没有提供额外的方法。Set 集合不允许包含相同的元素&#xff0c;如果试把两个相同的元素加入同一个 Set 集合中&#xff0c;则添加操作失败。Set集合支持的遍历方式和Collection集合一样&am…

设计模式系列:三、责任链设计模式

一、概述 责任链模式是一种行为设计模式&#xff0c;它允许多个对象处理一个请求&#xff0c;从而避免了请求的发送者和接收者之间的耦合关系。 优点是把任务划分为一个一个的节点&#xff0c;然后按照节点之间的业务要求、顺序&#xff0c;把一个个节点串联起来&#xff0c;…

单链表相关面试题--4.输入一个链表,输出该链表中倒数第k个结点

/* 解题思路&#xff1a; 快慢指针法 fast, slow, 首先让fast先走k步&#xff0c;然后fast,slow同时走&#xff0c;fast走到末尾时&#xff0c;slow走到倒数第k个节点。 */ class Solution { public:ListNode* FindKthToTail(ListNode* pListHead, unsigned int k) {struct Lis…

AppLink定时调度操作

RestCloud AppLink定时调度操作 定时调度可以让我们更加快速了解到数据的变动以作出更好的决策&#xff0c;接下来通过AppLink平台配置定时调度的操作。 1.登录RestCloud AppLink 2.点击授权管理 3.点击应用认证菜单 4.新建拼多多授权认证 基础定时调度配置 1.拉取一个定时器…