Polygon zkEVM协议治理、升级及其流程

1. 引言

随着Polygon社区开发者和内部团队的测试深入,当前版本的Polygon zkEVM不可避免地需更新和某些升级。

为激励开发者对Polygon zkEVM做battle-test,已启动了bug-bounty:

  • Rewards by Threat Level

由于zk-Rollup生态系统还处于萌芽阶段,预计升级频率会随着时间的推移而下降。与此同时,Polygon打算将其升级管理从目前的集中化方式转变为更加分散的工作方式。

Polygon致力于与以太坊关于L2治理的规范和价值观保持一致。正如Polygon的三大治理支柱中所概述的那样,这些治理的逐步变化将遵循Polygon改进提案(PIP)。具体的三根治理支柱是指:

  • The First Pillar: Protocol Governance
  • The Second Pillar: System Smart Contracts Governance
  • 第三根治理支柱:Public Goods Funding

当前,中心化体现在:

  • Admin Multisig Contract
  • Security Council Multisig

以用户利益优先原则:

  • 首先,zkEVM团队致力于保护系统的安全,以保护用户的资金。因此,任何感知到的对安全的威胁,无论大小,都需要被扼杀在萌芽状态。
  • 其次,大多数升级通常包括优化、错误修复或更准确的有效gas定价公式。从而意味着总体上公平且交易成本更低。

2. 部署battle-tested合约

为支持未来zkEVM协议的新特性添加、bug修复或优化升级,以Transparent Upgradeable Proxy (TUP) 方式部署了如下合约:

  • PolygonZkEVM.sol(共识合约)
  • PolygonZkEVMGlobalExitRoot.sol
  • PolygonZkEVMBridge.sol(bridge合约)

为了继承安全性,避免延长和使审计过程更加复杂,Polygon zkEVM团队选择使用OpenZeppelin的OpenZeppelin-upgrades库来实现此功能。

选择OpenZeppelin库的原因在于:

  • OpenZeppelin是业内知名品牌,因其对以太坊标准的实现进行了审计和开源,其OpenZeppelin-upgrades库已经过审计和战斗测试。
  • 此外,OpenZeppelin-upgrades不仅仅是一套合约,其还包括Hardhat和Truffle插件,以帮助进行代理部署、升级和管理员权限管理。

如下图所示,Open Zeppelin的TUP方式,使用delegated calls,隔离了协议实现的storage variables和fallback函数,支持对实现代码升级,而不需要修改storage状态或合约的公开地址。
在这里插入图片描述
根据OpenZeppelin的建议,部署了一个ProxyAdmin.sol的合约实例,其地址设置为proxy合约的admin。ProxyAdmin.sol也在openzeppelin-upgrades库中。Hardhat和Truffle插件使这些操作既安全又简单。

每个ProxyAdmin.sol实例都充当每个proxy的实际管理接口,管理帐户是每个ProxyAAdmin.sol实例的owner。

当zkEVM协议启动之后,ProxyAdmin.sol的所有权就转移给Admin role(管理员角色)。

3. Polygon zkEVM升级流程

为了保护仍处于测试版的Polygon zkEVM的安全,最好现在就抓住并防止任何可能的漏洞。
可升级性不是Polygon zkEVM的永久功能,而只是所谓Training Wheels的一部分。

升级通常会影响如下合约:

  • PolygonZkEVM.sol(共识合约)
  • PolygonZkEVMGlobalExitRoot.sol
  • PolygonZkEVMBridge.sol(bridge合约)

经典升级是仅影响逻辑,而不影响网络状态。如,影响共识合约的升级,可将老的verifier合约更新为新的。此时,从更新开始,逻辑改变,状态保持不变。

3.1 安全参数

zkEVM团队为升级所采取的安全措施与以太坊的安全标准相当,涉及:

  • Admin Multisig合约:避免单一账户控制升级。
  • Timelock合约:在升级执行之前,给用户足够的时间延迟来取回资金。
  • Transparent Upgradeable Proxy合约:源自OpenZeppelin库,已审计并经battle-tested。

3.2 升级流程

根据需要,在仍然允许升级的情况下,可提出升级提案。

在将提案发送到Timelock合约之前,该提案需要由三分之二的合格签署人通过Admin Multisig合同进行签署。
一旦满足Admin multisig合约的条件,包括至少附上两个签名,就可以使用Timelock合约schedule proposed升级。

zkEVM升级的时间延迟设置为10天,之后Admin会触发Timelock合约来执行升级。这意味着升级将作为正常交易提交给L1。

与Transparent Upgradeable Proxies一致,这确保了zkEVM的状态在逻辑更改时保持不变。

仍以之前的共识合约升级为例,下图展示了相应的Polygon zkEVM升级流程:
在这里插入图片描述

4. Admin Role及治理

Polygon zkEVM的Admin,包含了Polygon团队的3位开发者,这3位开发者会监督该zk-Rollup软件的任何升级。

无论做何种bug修复或更新,该Admin使用特殊的Admin Multisig合约来approve该修改——需要这3个Admin成员中的至少2个同意才行。在该修改执行之前,至少需要10天的等待期。10天的延迟,使得用户可仔细评估所提议的修改,并决定是否退出。名为Timelock的合约负责激活该10天延迟。

4.1 Admin合约详情

Admin拥有控制共识合约的以太坊账号,仅该账号可调用如下函数:

  • setTrustedSequencer
  • setForceBatchAllowed
  • setTrustedSequencerURL
  • setTrustedAggregator
  • setTrustedAggregatorTimeout
  • setPendingStateTimeout
  • setMultiplierBatchFee
  • setVeryBatchTimeTarget
  • setAdmin
  • deactivateEmergencyState

可更新zkEVM协议合约实现的,所有ProxyAdmin.sol实例,都属于该Admin账号。
此外,所有代理都归该Admin账号所有,使得其为唯一授权的账号——可对zkEVM协议合约做修改。而Security Council Multisig不具备该权限。

4.2 Timelock Controller

所谓Timelock Controller:

  • 是一个智能合约,支持设置delay,在应用潜在风险的维护流程之前,给用户提供一定的时间来退出。

为改进用户安全性和信心,Timelock Controller已添加到zkEVM协议。

该Admin可使用Timelock Controller来schedule和commit L1中的维护操作交易,当特定的minDelay时长结束之后,会激活该timelock以执行这些维护操作交易。

Polygon zkEVM团队决定使用OpenZeppelin的TimelockController.sol合约来继承安全性,同时避免审计流程的延长和复杂化。已修改了合约中的getMinDelay函数,该修改见PolygonZkEVMTimelock.sol合约中。

当zkEVM合约系统处于紧急模式时,新的getMinDelay函数将设置minDelay时长为0,此时由Security Council Multisig接管。

在zk-Rollup部署之后,本协议的Admin role设置为PolygonZkEVMTimelock.sol合约地址的一个实例。

4.3 zkEVM合约治理

Admin承担着重要而关键的责任,这就是为什么它由三(3)名成员组成,而不是只有一个人。因此,PolygonZkEVMTimelock.sol合约实例的Admin Ethereum帐户被分配给某multisig合约作为zkEVM协议治理工具,从而实现一定程度的整体去中心化。

Polygon zkEVM L1合约的治理tree为:
在这里插入图片描述
仅当遵循如下流程时,才可执行协议维护操作:【由于协议合约的治理链,所有交易通常遵循如下流程】

  • 1)维护操作交易被proposed并存储在governance multisig合约中。Polygon团队对此达成共识——是否应用这些维护操作。Voting继承自L1的安全性。
  • 2)一旦达成某种决议,且同意执行这些维护操作,将触发governance multisig来将这些交易scheduled to be executed,仅当10天延迟结束后,才会执行这些交易。
  • 3)一旦延迟时长结束,名为PolygonZkEVMTimelock.sol的Timelock合约将执行这些scheduled交易。

5. Security Council

除之前提及的治理问题和安全考量之外,对于像Polygon zkEVM这样的年轻L2系统来说,还有一个重要元素:

  • Security Council Multisig

由于可能存在严重的bug或其它安全问题,因此需要立即升级,因此允许紧急升级是一种良好的安全做法。

也就是说,这些合约不是采用三选二的Admin Multisig合约并等待Timelock合约施加的延迟,而是通过部署所谓的Security Council Multisig来绕过这些合约。

然而,至关重要的是要强调,Security Council Multisig是一项临时措施,一旦Polygon zkEVM经过充分的战斗测试,它最终将被淘汰。

尽管最终目标是朝着完全去中心化的Polygon zkEVM迈进,但在zkRollup的早期阶段,使用Security Council Multisig是不可避免的。
这是安全和权力下放之间的权衡。因此,为了长期安全起见,这是一个深思熟虑的决定,即在早期阶段进行更集中的开发,以实现更分散的后期阶段。
尽管安全理事会成员总是有可能耍无赖和勾结,但75%的门槛加上至少33%的外部成员签名大大降低了风险。

5.1 了解Security Council Multisig

Security Council为负责监督Polygon zkEVM初始化阶段安全性的委员会。

rollup的security council具有双重责任:

  • 确保系统在紧急状态下及时停止,以及
  • 确保在实际可行的情况下尽快实施紧急升级。

因此,security council使用了一种特殊的multisig合约,该合约取代了通常的Admin Multisig合约和Timelock合约。
在这里插入图片描述

5.2 Security Council成员组成

Security Council通常由一定数量的有生物的社区成员组成,这些个体或公共公司代表可保持匿名。

这些人是对以太坊生态系统的福利有既得利益的个人或组织,通常是从知名的以太坊开发者和研究人员中挑选出来的。
Polygon zkEVM的安全理事会由八(8)名成员组成,其中四名成员是Polygon团队内部成员,而其他成员必须来自Polygon外部。
最低要求,即使在L2Beat 报告中也提到了,是这些人必须有足够的知识和能力,才能对multisig批准的行动做出最佳判断。
这些成员并非完全匿名,因为他们的地址是公开的。他们的地址可以在Etherscan中检查。
以下是Polygon zkEVM安全理事会的8个地址列表:

  • 0xFe45baf0F18c207152A807c1b05926583CFE2e4b
  • 0xaF46a0ddf80DFFB49C87656625E65A37499B261D
  • 0xBDc235cC9d6Baa641c5ae306bc83962475A5FEFf
  • 0x4c1665d6651ecEfa59B9B3041951608468b18891
  • 0x3ab9f4b964eE665F7CDf1d65f1cEEc6196B0D622
  • 0x49c15936864690bCd6af0ecaca8E874adFF30E86
  • 0x9F7dfAb2222A473284205cdDF08a677726d786A0
  • 0x21887c89368bf918346c62460e0c339113801C28

5.3 何为Security Council Multisig?

Security Council Multisig为由Polygon zkEVM Security Council部署的multisig合约,当触发紧急状态或需紧急升级时,需执行该合约。

Security Council Multisig合约为6-out-of-8 multisig,合约成功部署需附加Security Council中的6个签名。

同时规定,所附加的6个签名中,至少有2个签名是来自Polygon团队之外的4个成员。

参考资料

[1] Polygon zkEVM协议可升级性
[2] Polygon zkEVM升级流程
[3] Polygon zkEVM的管理员及治理
[4] Polygon zkEVM安全委员会

附录:Polygon Hermez 2.0 zkEVM系列博客

  • ZK-Rollups工作原理
  • Polygon zkEVM——Hermez 2.0简介
  • Polygon zkEVM网络节点
  • Polygon zkEVM 基本概念
  • Polygon zkEVM Prover
  • Polygon zkEVM工具——PIL和CIRCOM
  • Polygon zkEVM节点代码解析
  • Polygon zkEVM的pil-stark Fibonacci状态机初体验
  • Polygon zkEVM的pil-stark Fibonacci状态机代码解析
  • Polygon zkEVM PIL编译器——pilcom 代码解析
  • Polygon zkEVM Arithmetic状态机
  • Polygon zkEVM中的常量多项式
  • Polygon zkEVM Binary状态机
  • Polygon zkEVM Memory状态机
  • Polygon zkEVM Memory Align状态机
  • Polygon zkEVM zkASM编译器——zkasmcom
  • Polygon zkEVM哈希状态机——Keccak-256和Poseidon
  • Polygon zkEVM zkASM语法
  • Polygon zkEVM可验证计算简单状态机示例
  • Polygon zkEVM zkASM 与 以太坊虚拟机opcode 对应集合
  • Polygon zkEVM zkROM代码解析(1)
  • Polygon zkEVM zkASM中的函数集合
  • Polygon zkEVM zkROM代码解析(2)
  • Polygon zkEVM zkROM代码解析(3)
  • Polygon zkEVM公式梳理
  • Polygon zkEVM中的Merkle tree
  • Polygon zkEVM中Goldilocks域元素circom约束
  • Polygon zkEVM Merkle tree的circom约束
  • Polygon zkEVM FFT和多项式evaluate计算的circom约束
  • Polygon zkEVM R1CS与Plonk电路转换
  • Polygon zkEVM中的子约束系统
  • Polygon zkEVM交易解析
  • Polygon zkEVM 审计及递归证明
  • Polygon zkEVM发布公开测试网2.0
  • Polygon zkEVM测试集——创建合约交易
  • Polygon zkEVM中的Recursive STARKs
  • Polygon zkEVM的gas定价
  • Polygon zkEVM zkProver基本设计原则 以及 Storage状态机
  • Polygon zkEVM bridge技术文档
  • Polygon zkEVM Trustless L2 State Management 技术文档
  • Polygon zkEVM中的自定义errors
  • Polygon zkEVM RPC服务
  • Polygon zkEVM Prover的 RPC功能
  • Polygon zkEVM PIL技术文档
  • Polygon zkEVM递归证明技术文档(1)【主要描述了相关工具 和 证明的组合、递归以及聚合】
  • Polygon zkEVM递归证明技术文档(2)—— Polygon zkEVM架构设计
  • Polygon zkEVM递归证明技术文档(3)——代码编译及运行
  • Polygon zkEVM递归证明技术文档(4)—— C12 PIL Description
  • Polygon zkEVM递归证明技术文档(5)——附录:借助SNARKjs和PIL-STARK实现proof composition
  • eSTARK:Polygon zkEVM的扩展STARK协议——支持lookup、permutation、copy等arguments(1)
  • eSTARK:Polygon zkEVM的扩展STARK协议——支持lookup、permutation、copy等arguments(2)
  • eSTARK:Polygon zkEVM的扩展STARK协议——支持lookup、permutation、copy等arguments(3)
  • Polygon zkEVM的Dragon Fruit和Inca Berry升级

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/165962.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

算法设计与分析复习--贪心(二)

文章目录 上一篇哈夫曼编码单源最短路最小生成树Kruskal算法Prim算法 多机调度问题下一篇 上一篇 算法设计与分析复习–贪心&#xff08;一&#xff09; 哈夫曼编码 产生这种前缀码的方式称为哈夫曼树 哈夫曼树相关习题AcWing 148. 合并果子 #include <iostream> #inc…

LDO线性稳压器要不要并联二极管?

昨天介绍过了LDO是什么东西&#xff0c;那么对于它的应用场景是怎么的呢&#xff1f;LDO要不要并联二极管呢&#xff1f; 一般来说&#xff0c;LDO是不需要并联二极管的。 看下图第一个是典型电路&#xff0c;第二个是带可调节电压功能的LDO典型电路&#xff0c;从图里就可以…

设计模式-组合模式-笔记

“数据结构”模式 常常有一些组件在内部具有特定的数据结构&#xff0c;如果让客户程序依赖这些特定数据结构&#xff0c;将极大地破坏组件的复用。这时候&#xff0c;将这些特定数据结构封装在内部&#xff0c;在外部提供统一的接口&#xff0c;来实现与特定数据结构无关的访…

一起Talk Android吧(第五百五十四回:分享一个Retorfit使用错误的案例)

文章目录 1. 案例场景2. 案例现象3. 原因分析和解决方案3.1 原因分析3.2 解决方案4. 经验总结各位看官们大家好,上一回中咱们说的例子是"解析Retrofit返回的数据",本章回中将分享一个 Retrofit使用错误的案例。闲话休提,言归正转,让我们一起Talk Android吧! 1. …

三层交换机实现不同VLAN间通讯

默认时&#xff0c;同一个VLAN中的主机才能彼此通信&#xff0c;那么交换机上的VLAN用户之间如何通信&#xff1f; 要实现VLAN之间用户的通信&#xff0c;就必须借助路由器或三层交换机来完成。 下面以三层交换机为例子说明&#xff1a; 注意&#xff1a; 1.交换机与三层交换…

HWS-CTF-第七期山大站-inverse

文章目录 inversemainworkread_intread_n 思路onegadget exp 第一次真正意义上独立在比赛中做出题目来了&#xff0c;距离真正意义接触CTF-PWN差不多正好两个月。但由于不知道靶场要自己开而且端口每次自己打开会改&#xff0c;交flag稍微晚了些&#xff08;我太菜了&#xff0…

Java中锁的深入理解

目录 对象头的理解 Monitor&#xff08;锁&#xff09; 锁类型 偏向锁 偏向锁的优化机制 轻量级锁 重量级锁 对象头的理解 在32位Java虚拟机中普通对象的对象头是占用8个字节&#xff0c;其中4个字节为Mark Word。用来存储对象的哈希值&#xff0c;对象创建后在JVM中的…

【顺序表的实现】

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 1. 数据结构相关概念 1、什么是数据结构 2、为什么需要数据结构&#xff1f; 2、顺序表 1、顺序表的概念及结构 1.1 线性表 2、顺序表分类 3、动态顺序表的实现 总…

ssm+vue的高校疫情防控管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频&#xff1a; ssmvue的高校疫情防控管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结…

【C++入门】拷贝构造运算符重载

目录 1. 拷贝构造函数 1.1 概念 1.2 特征 1.3 常用场景 2. 赋值运算符重载 2.1 运算符重载 2.2 特征 2.3 赋值运算符 前言 拷贝构造和运算符重载是面向对象编程中至关重要的部分&#xff0c;它们C编程中的一个核心领域&#xff0c;本期我详细的介绍拷贝构造和运算符重载。 1. …

面向对象与面向过程的区别

面向对象 以对象为中心&#xff0c;把数据封装成为一个整体&#xff0c;其他数据无法直接修改它的数据&#xff0c;将问题分解成不同对象&#xff0c;然后给予对象相应的属性和行为。 面向过程 关注代码过程&#xff0c;直接一程序来处理数据&#xff0c;各模块之间有调用与…

OSI参考模型

目录 一. OSI参考模型的各层功能二. 网络排错三. 网络安全四. 实体、协议、服务和服务访问点SAP五. TCP IP体系结构 一. OSI参考模型的各层功能 \quad \quad \quad \quad 我们首先来看应用层实现的功能 每个字段的各种取值所代表的意思 \quad \quad 比如要保存的文件内容是ab…

OpenAI 董事会与 Sam Altman 讨论重返 CEO 岗位事宜

The Verge 援引多位知情人士消息称&#xff0c;OpenAI 董事会正在与 Sam Altman 讨论他重新担任首席执行官的可能性。 有一位知情人士表示&#xff0c;Altman 对于回归公司一事的态度暧昧&#xff0c;尤其是在他没有任何提前通知的情况下被解雇后。他希望对公司的治理模式进行重…

【开源】基于Vue.js的高校实验室管理系统的设计和实现

项目编号&#xff1a; S 015 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S015&#xff0c;文末获取源码。} 项目编号&#xff1a;S015&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 实验室类型模块2.2 实验室模块2.3 实…

Tomcat无法映射到activiti-app导致activiti无法启动页面

原因之一&#xff1a;JDK版本与Tomcat版本不匹配&#xff0c;jdk8 yyds 我使用的是JDK11&#xff0c;Tomcat是9.0的&#xff0c;都是最新的&#xff0c;但还是不行&#xff0c;最后JDK改为8&#xff0c;tomcat的cmd后台没有报错&#xff0c;activiti-pp也可以正常访问了,很神奇…

鸿蒙应用开发之打包与上架

一、概述 当您开发、调试完HarmonyOS应用/元服务&#xff0c;就可以前往AppGallery Connect申请上架&#xff0c;华为审核通过后&#xff0c;用户即可在华为应用市场获取您的HarmonyOS应用/元服务。 HarmonyOS会通过数字证书与Profile文件等签名信息来保证应用的完整性&#…

数电实验-----实现74LS139芯片扩展为3-8译码器以及应用(Quartus II )

目录 一、74LS139芯片介绍 芯片管脚 芯片功能表 二、2-4译码器扩展为3-8译码器 1.扩展原理 2.电路图连接 3.仿真结果 三、3-8译码器的应用&#xff08;基于74ls139芯片&#xff09; 1.三变量表决器 2.奇偶校验电路 一、74LS139芯片介绍 74LS139芯片是属于2-4译码器…

Halcon Solution Guide I basics(0): 导论解析

文章目录 文章专栏前言文章目录翻译文档的说明 结论LOL比赛结局 文章专栏 Halcon开发 前言 今天开始看Halcon的官方文档。由于市面上的教学主要是以基础的语法&#xff0c;算子简单介绍为主。所以我还是得看官方的文本。别的不多说了。有道词英语词典&#xff0c;启动。 还有…

解决WPF项目xaml出现“正在等待IntelliSense完成”的问题

在WPF项目xaml里经常出现“正在等待IntelliSense完成”的场景&#xff0c;如下图&#xff1a; 解决办法 工具–选项

【智能家居】5、主流程设计以及外设框架编写与测试

目录 一、主流程设计 1、工厂模式结构体定义 &#xff08;1&#xff09;指令工厂 inputCmd.h &#xff08;2&#xff09;外设工厂 controlDevices.h 二、外设框架编写 1、创建外设工厂对象bathroomLight 2、编写相关函数框架 3、将浴室灯相关操作插入外设工厂链表等待被调…