OpenAI Assistants-API简明教程

  OpenAI在11月6号的开发者大会上,除了公布了gpt4-v、gpt-4-turbo等新模型外,还有一个assistants-api,基于assistants-api开发者可以构建自己的AI助手,目前assistants-api有三类的工具可以用。首先就是之前大火的代码解释器(Code Interpreter),这个在chatgpt-plus会员上线的时候大火了一把。其次就是文件检索(Retrieval),利用Retrieval你可以在assistants中外挂自己的知识库。还有就是函数调用了,这个就不在多说了。assistants-api目前还处于beta版本,但从OpenAI的规划来看,后续应该是会支持DALLE3、gpt4-v甚至是plugin的,我们可以期待下。

  使用assistants-api和使用chat-api有啥区别?首先就是chat api只能使用模型的chat能力的,而且如果你之前使用过,就会发现chat对话历史都需要自行维护,很不方便。而assistants-api除了chat的能力外,它还可以调用强大的解释器(Code Interpreter),还可以调用外部函数(Functions Calling), 而且还可以外挂自己的知识库(Retrieval),主要你还不需要维护对话历史,只需要关注对话本身即可。 如果后续assistants-api支持了plugin、DALLE3和gpt4-v之后,你完全可以认为它就是一个api版本的chatGPT-Plus,当然功能可以可以完全定制,相信看到这里你肯定也蠢蠢欲动,想定制自己的AI助手了。

  在正式开始开发之前,我们先来了解下Assistants-API的几个核心对象。
在这里插入图片描述

对象作用
Assistant助手,可以使用指定模型根据的一个实体,如果把助手比作某个人的化,这里就是指具备某些能力的一个具体的人
Thread没有合适的翻译,这里就不翻译了,可以认为这个是和助手的沟通的上下文对话信息, 就好比你和某宝客服沟通,整个对话就可以认为是一个Thread
Run也没有合适的翻译,可以认为是你向助手发起一次对话,整个对话响应的过程及工程中的状态变化,就可以当成一个run,一个run里不仅仅可以有模型的回复,还可以有函数调用、代码解释器调用、文件召回……
Run StepRun各个步骤的详情,可以看到整个助手的运行过程,主要是方便问题排查和助手优化

  知道了这些概念,我们就可以着手实现自己的Assistant了,为了能更好理解整个Assistant的开发流程,我们还是用一个具体的示例来完成整个功能的开发。假设我们需要开发一个花店财务助手,它的主要功能是根据我们每天卖出去的花,统计成本和收入,最后将收入和成本保存到数据库里。

  这里我提前准备了一个excel表格(flower_prices.xlsx),来记录所有花的成本和售价(虚构数据、不代表真实价格)。
在这里插入图片描述
  下面正式开始我们花店财务助手的开发和使用。

创建助手

  这里首先需要将我们的flower_prices.csv转成Assistant能使用的file,使用如下代码即可:

from openai import OpenAI
client = OpenAI(base_url='https://thales.xindoo.xyz/openai/v1/')
# 将文件上传至openAI保存
file = client.files.create(
  file=open("flower_prices.csv", "rb"),
  purpose='assistants'
)

  接下来我们定义保存账单信息的function,具体可以参考下我上篇博客OpenAI的多函数调用

# 定义保存账单的方法
def save_bill(totalCost, totalIncome):
    '''保存总成本和总的收入'''
    print(totalCost, totalIncome)
    return "success"

function = {
        "type": "function",
        "function": {
            "name": "save_bill",
            "description": "保存总成本和总的收入",
            "parameters": {
                "type": "object",
                "properties": {
                    "totalCost": {
                        "type": "number",
                        "description": "总成本",
                    },
                    "totalIncome": {
                        "type": "number",
                        "description": "总收入",
                    }
                },
                "required": ["totalCost", "totalIncome"],
            },
        }
    }
available_functions = { "save_bill": save_bill}  

创建助手(assistant)

  这里需要调用API将所有的开关、文件和函数调用信息都传给OpenAI,创建一个属于我们自己的assistant。

# 创建助手,将code_interpreter,retrieval,function都开启
assistant = client.beta.assistants.create(
  name="花店财务助手",
  description="按照每种花的售出量,统计成本和收入,计算出总利润",
  model="gpt-4-1106-preview",
  tools=[{"type": "code_interpreter"}, {"type": "retrieval"}, function],
  file_ids=[file.id]
)

创建Thread

  如上文讲到Thread是用户和Assistant对话的上下文信息,用户和Assistant初次对话肯定是需要创建上下文的,代码和很简单,如下:

# 创建对话Thread
thread = client.beta.threads.create(
  messages=[
    {
      "role": "user",
      "content": "我卖出去了红玫瑰3支、郁金香2支、百合6支,计算下总成本和总收入,给出具体的计算过程"
    }
  ]
)

  这里看到Thead并没有和Assistant关联到一起,猜测这里只是在本地代码里创建了一个Thread对象,实际上在OpenAI那边还没有任何操作,这个可能是OpenAI利用懒加载来减轻对服务端的压力。

创建Run

# 创建Run
run = client.beta.threads.runs.create(
  thread_id=thread.id,
  assistant_id=assistant.id
)

  创建Run的方法也很简单,可以看到只需要传thread_id和assistant_id两个参数即可,而这两个id都是字符串,尤其是assistant_id 你都是可以在OpenAI网站后台看到的,相信这里大家已经猜到了,Assistant和Thread不用每次都创建新的。

# 从Run中获取结果
run = client.beta.threads.runs.retrieve(
  thread_id=thread.id,
  run_id=run.id
)

获取run的状态

  Run创建好之后,需要让OpenAI运行起来,这里就需要调用Retrieve方法,来获取Run的运行结果,这里如果你打印出run的话,你可能会看到类似的信息。

Run(id='run_A9phobcoIOG3euibElksTu8a', assistant_id='asst_hW7NrPZP8q8KvE9oiuceg5mM', cancelled_at=None, completed_at=None, created_at=1700400089, expires_at=1700400689, failed_at=None, file_ids=['file-uhMIBtm4BPXlJlY1UzGIPlGn'], instructions=None, last_error=None, metadata={}, model='gpt-4-1106-preview', object='thread.run', required_action=None, started_at=1700400089, status='in_progress', thread_id='thread_nvsTyK6DQdmKoVxOseSSKZF4', tools=[ToolAssistantToolsCode(type='code_interpreter'), ToolAssistantToolsRetrieval(type='retrieval'), ToolAssistantToolsFunction(function=FunctionDefinition(name='save_bill', parameters={'type': 'object', 'properties': {'totalCost': {'type': 'number', 'description': '总成本'}, 'totalIncome': {'type': 'number', 'description': '总收入'}}, 'required': ['totalCost', 'totalIncome']}, description='保存总成本和总的收入'), type='function')])

  这里获取到的是run的最新状态,有可能run还没有执行完,所以可能需要一直循环调取,等待run的状态发生变化。Run有以下的一些状态。
在这里插入图片描述
具体的状态和含义如下表:

状态定义
queued当Runs首次创建或者调用了retrive获取状态后,就会变成queued等待运行。正常情况下,很快就会变成in_progress状态。
in_progress说明run正在执行中,这时候可以调用run step来查看具体的执行过程
completed执行完成,可以获取Assistant返回的消息了,也可以继续想Assistant提问了
requires_action如果Assistant需要执行函数调用,就会转到这个状态,然后你必须按给定的参数调用指定的方法,之后run才可以继续运行
expired当没有在expires_at之前提交函数调用输出,run将会过期。另外,如果在expires_at之前没获取输出,run也会变成expired状态
cancelling当你调用client.beta.threads.runs.cancel(run_id=run.id, thread_id=thread.id)方法后,run就会变成cancelling,取消成功后就会变成callcelled状态
cancelledRun已成功取消。
failed运行失败,你可以通过查看Run中的last_error对象来查看失败的原因。

  这里需要特别注意requires_action状态,这个是需要要求代码本地去执行一些函数的,执行完成后将结果返回给Assistant,之后run才能继续运行下去。

run触发函数调用

  如果run.status是requires_action,我们需要调用本地工具,当然现在只有函数调用,然后将函数调用的结果返给Assistant,方便它继续执行,代码如下:

if run.status == 'requires_action':
    tool_outputs=[]
    # 调用并保存所有函数调用的结果
    for call in run.required_action.submit_tool_outputs.tool_calls:
        if call.type != "function":
            continue
        # 获取真实函数
        function = available_functions[call.function.name]
        output = {
            "tool_call_id": call.id,
            "output": function(**call.function.arguments),
        }
        tool_outputs.append(output)
    # 将函数调用的结果回传给Assistant
    run = client.beta.threads.runs.submit_tool_outputs(
        thread_id=thread.id,
        run_id=run.id,
        tool_outputs=tool_outputs
    )

获取Assistant的消息

  接下来我只需要轮询retrive接口,获取run的最新状态,如果状态是completed,就可以读取Assistant的返回结果了。

# 获取run的最新状态。 
run = client.beta.threads.runs.retrieve(
  thread_id=thread.id,
  run_id=run.id
)
if run.status == 'completed':
    messages = client.beta.threads.messages.list(
      thread_id=thread.id
    )
    print(messages)

  这里注意下messages是倒序排列的,所以最新的消息是在最上面的。

发起新信息

  上面的流程是从Assistant创建到发起首次消息的流程,如果我们需要紧接着之前的流程继续对话,只需要在thread中添加新的消息,然后然后创建并执行run即可,代码如下:

# 添加新消息
message = client.beta.threads.messages.create(
  thread_id=thread.id,
  role="user",
  content="另外还有2支向日葵,补充下这份账单"
)
# 创建run
run = client.beta.threads.runs.create(
  thread_id=thread.id,
  assistant_id=assistant.id
)
# 获取执行结果
run = client.beta.threads.runs.retrieve(
  thread_id=thread.id,
  run_id=run.id
)

结语

  以上就是Assistants-API整体的开发流程,了解了这些流程后,大家可以很容易构建出像ChatGPT-Plus的私人助理。当然Assistants-API目前还是在beta阶段,有很多功能不完善,比如不支持流式返回、不支持图片生成、不支持插件调用……,甚至run的状态还需要轮询来获取……。另外我在写本文demo的时候,发现Retrivel的文本内容召回成功率非常低,导致账单计算成功率很低(也可能是我给的文本格式的问题)。还有就是code_interpreter运行成功率也很低,经常出现运行不起来的情况,难怪还是beta版本,只能期待后续官方能优化下。

  另外有些像assistant、thread、run、run step的查看和管理的接口我这里没有讲到,具体大家可自行查阅下官网文档。 如果大家需要试用Assistants-API的话,也可以先到官方https://platform.openai.com/assistants 先行体验,试用完成后可以再将页面配置完整翻译成代码,然后再嵌入到自己的应用中。

完整的代码我已上传至Github上https://github.com/xindoo/openai-examples/blob/main/flower_assistant.ipynb,后续OpenAI其他API的使用示例我也会上传到这个仓库,有兴趣可以关注下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/165702.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu系统安装Python3.6.8-Python源代码编译安装-Python环境安装

一、背景 本文将着重介绍如何在Python环境下,安装Python3.6.8,以满足在Ubuntu系统中使用Python的需求。 二、详细步骤 安装Python的方法有很多,本文中我们采用源代码的方式安装Python,首先我们需要下载Python源代码:源…

Lesson 04 模板入门

C:渴望力量吗,少年? 文章目录 一、泛型编程1. 引入2. 函数模板(1)函数模板概念(2)函数模板格式(3)函数模板的原理(4)函数模板的实例化&#xff08…

【ATTCK】MITRE Caldera-路径发现插件

CALDERA是一个由python语言编写的红蓝对抗工具(攻击模拟工具)。它是MITRE公司发起的一个研究项目,该工具的攻击流程是建立在ATT&CK攻击行为模型和知识库之上的,能够较真实地APT攻击行为模式。 通过CALDERA工具,安全…

git基本用法和操作

文章目录 创建版本库方式:Git常用操作命令:远程仓库相关命令分支(branch)操作相关命令版本(tag)操作相关命令子模块(submodule)相关操作命令忽略一些文件、文件夹不提交其他常用命令 创建版本库方式: 创建文件夹 在目录下 右键 Git Bush H…

git rebase 和 git merge的区别?以及你对它们的理解?

文章目录 前言是什么分析区别后言 前言 hello world欢迎来到前端的新世界 😜当前文章系列专栏:git操作相关 🐱‍👓博主在前端领域还有很多知识和技术需要掌握,正在不断努力填补技术短板。(如果出现错误,感谢…

卡尔曼滤波器在车流量检测中的应用

目录 1. 作者介绍2. 卡尔曼滤波器2.1 卡尔曼滤波概述2.2 标志性发展2.3 卡尔曼公式理解 3. 车流量检测3.1 背景介绍3.2 实现过程3.2.1 YOLOv3网络模型结构3.2.2 SORT算法3.2.3 基于虚拟线圈法的车辆统计 4. 算法实现4.1 Kalman.py4.2 完整代码4.3 结果展示 1. 作者介绍 吴思雨…

【STM32】IIC(Inter Integrated Cirruit--集成电路总线)

【单片机】14-I2C通信之EEPROM-CSDN博客 一、IIC总线协议介绍 1.IIC简介 同步(有时钟频率),半双工(同一个时间只能接收或者发送),串行(一个字节一个字节传输),高位读取…

卷积神经网络(VGG-16)海贼王人物识别

文章目录 前期工作1. 设置GPU(如果使用的是CPU可以忽略这步)我的环境: 2. 导入数据3. 查看数据 二、数据预处理1. 加载数据2. 可视化数据3. 再次检查数据4. 配置数据集5. 归一化 三、构建VGG-16网络1. 官方模型(已打包好&#xff…

小迪笔记(1)——操作系统文件下载反弹SHELL防火墙绕过

名词解释 POC:验证漏洞存在的代码; EXP:利用漏洞的代码; payload:漏洞利用载荷, shellcode:漏洞代码, webshell:特指网站后门; 木马:强调控制…

MVSNet论文笔记

MVSNet论文笔记 摘要1 引言2 相关基础2.1 多视图立体视觉重建(MVS Reconstruction)2.2 基于学习的立体视觉(Learned Stereo)2.3 基于学习的多视图的立体视觉(Learned MVS) Yao, Y., Luo, Z., Li, S., Fang,…

Linux 零拷贝splice函数

Linux splice 函数简介 splice 是 Linux 系统中用于在两个文件描述符之间移动数据的系统调用。它的主要作用是在两个文件描述符之间传输数据&#xff0c;而无需在用户空间进行数据拷贝。也是零拷贝操作. 函数原型 #include <fcntl.h> ssize_t splice(int fd_in, loff_…

『Spring Boot Actuator Spring Boot Admin』 实现应用监控管理

前言 本文将会使用 Spring Boot Actuator 组件实现应用监视和管理&#xff0c;同时结合 Spring Boot Admin 对 Actuator 中的信息进行界面化展示&#xff0c;监控应用的健康状况&#xff0c;提供实时警报功能 Spring Boot Actuator 简介 官方文档&#xff1a;Production-rea…

【Java 进阶篇】JQuery 事件绑定:`on` 与 `off` 的奇妙舞曲

在前端开发的舞台上&#xff0c;用户与页面的互动是一场精彩的表演。而 JQuery&#xff0c;作为 JavaScript 的一种封装库&#xff0c;为这场表演提供了更为便捷和优雅的事件绑定方式。其中&#xff0c;on 和 off 两位主角&#xff0c;正是这场奇妙舞曲中的核心演员。在这篇博客…

【C++】一文全解C++中的异常:标准库异常体系&自定义异常体系(含代码演示)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.C语言传统的处理错误的方式二.C异常…

Unity中Shader法线贴图(上)

文章目录 前言一、法线纹理的作用二、为什么法线贴图长这样&#xff1f;&#xff08;蓝色&#xff09;三、法线贴图能使纹理采样时&#xff0c;进行偏移采样四、在Shader中使用法线贴图1、在属性面板定义一个变量来接收法线贴图2、在使用前声明 _NormalTex3、在片元着色器中&am…

SQLite 安装和 Java 使用教程

SQLite是一个C语言库&#xff0c;它实现了一个小型、快速、自包含、高可靠性、功能齐全的SQL数据库引擎。SQLite是世界上使用最多的数据库引擎。SQLite内置于所有手机和大多数计算机中&#xff0c;并捆绑在人们每天使用的无数其他应用程序中。 SQLite文件格式稳定、跨平台、向…

系列三、GC垃圾回收算法和垃圾收集器的关系?分别是什么请你谈谈

一、关系 GC算法&#xff08;引用计数法、复制算法、标记清除算法、标记整理算法&#xff09;是方法论&#xff0c;垃圾收集器是算法的落地实现。 二、4种主要垃圾收集器 4.1、串行垃圾收集器&#xff08;Serial&#xff09; 它为单线程环境设计&#xff0c;并且只使用一个线程…

Java --- JVM之垃圾回收相关算法

目录 一、垃圾标记算法 1.1、垃圾标记阶段&#xff1a;对象存活判断 1.2、引用计数算法 1.3、可达性分析算法 1.4、GC Roots 二、对象的finalization机制 2.1、生存还是死亡&#xff1f; 三、查看GC Roots 3.1、使用MAT查看 四、使用JProfiler分析OOM 五、清除阶段算…

李宏毅2023机器学习作业HW05解析和代码分享

ML2023Spring - HW5 相关信息&#xff1a; 课程主页 课程视频 Sample code HW05 视频 HW05 PDF 个人完整代码分享: GitHub | Gitee | GitCode 运行日志记录: wandb P.S. HW05/06 是在 Judgeboi 上提交的&#xff0c;完全遵循 hint 就可以达到预期效果。 因为无法在 Judgeboi 上…

git常用命令和参数有哪些?【git看这一篇就够了】

文章目录 前言常用命令有哪些git速查表奉上常用参数后言 前言 hello world欢迎来到前端的新世界 &#x1f61c;当前文章系列专栏&#xff1a;git操作相关 &#x1f431;‍&#x1f453;博主在前端领域还有很多知识和技术需要掌握&#xff0c;正在不断努力填补技术短板。(如果出…