Linux | C语言中volatile关键字的理解

目录

前言

一、代码引入

二、现象解释

三、具体引用


前言

        本章主要讲解介绍volatile关键的作用与使用场合;深刻理解volatile关键字;本文你需要有信号相关的基础知识;

Linux | 信号-CSDN博客

一、代码引入

        首先,我们来查看下面这段代码;

#include <iostream>
#include <signal.h>

// 定义全局变量
int flag = 1;

void handler(int signum)
{
    (void)(signum); // 防止编译器警告
    std::cout << "change before flag:" << flag << std::endl;
    flag = 0;
    std::cout << "change after flag:" << flag << std::endl;
}

int main()
{
    // 对2号信号捕捉
    signal(SIGINT, handler);
    
    // 死循环
    while(flag);

    std::cout << "run here..." << std::endl;
    return 0;
}

        当我们发送2号信号时,全局变量flag被改为了0,然后循环条件不满足,打印 run here 后退出;我们运行查看结果是否满足我们预期结果;如下所示;

        第一个红色框起来的是我们编译程序所用指令;第二个红色框起来的是当我们按下 ctrl + c 发送2号信号时,程序如我么预期所料;

        接下来,我们来介绍以下 gcc/g++ 的几个编译选项;如下图所示;

        -O1、-O2、-O3分别为编译时三个不同等级的优化,其中优化程度由低到高,我们选择最高等级,再次编译运行代码;如下所示;

        神奇的一幕发生了,我们发现我们无论按多少次 ctrl + c 都无法退出程序,我们发送2号信号,也被处理了,我们的全局变量flag不是被置为0了吗?为什么还是没有办法退出while循环呢?下面我们来仔细讲解这个神奇现象;

二、现象解释

        实际上,这就是跟我们的编译器优化有关,我们把视角拉到代码中;如下图所示;

        我们的while循环判断分为以上三个步骤,而当我们编译时对代码采用 O3 级别的优化时,我们的编译器检测到循环中没有对全局变量flag进行修改,因此直接将上面的步骤优化成了如下所示;

        故即使我们发送2号信号将内存中的flag更改,但是判断时时候,依旧直接判断寄存器中flag的那个值;所以才会看到上述那种神奇现象;

三、具体引用

        我们本文的主角volatile关键字就是为了防止这种编译器过度优化的现象,我们可以在定义flag变量的前面加上一个 volatile关键字,这样可以防止我们的变量flag参与被编译器编译的代码过度优化;

#include <iostream>
#include <signal.h>

// 定义全局变量(增加volatile关键字)
volatile int flag = 1;

void handler(int signum)
{
    (void)(signum); // 防止编译器警告
    std::cout << "change before flag:" << flag << std::endl;
    flag = 0;
    std::cout << "change after flag:" << flag << std::endl;
}

int main()
{
    // 对2号信号捕捉
    signal(SIGINT, handler);
    
    // 死循环
    while(flag);

    std::cout << "run here..." << std::endl;
    return 0;
}

        代码几乎完全相同,就加入了一个volatile关键字,避免了这种编译器过度优化现象;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/164429.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【文末附资料链接】2023年第十三届亚太杯数学建模竞赛(APMCM)优秀参考论文思路指导(持续更新中ing)

一、赛事介绍 数学建模作为一门跨学科的科学&#xff0c;不仅需要对数学知识的熟练掌握&#xff0c;还需要对实际问题的深刻理解和解决问题的创新思维。亚太杯数学建模竞赛旨在激发青年学子的创造力和团队协作精神&#xff0c;培养其在实际问题中运用数学方法解决现实挑战的能力…

介绍交换空间概念以及如何设置交换空间

文章目录 什么交换空间新增交换空间 什么交换空间 交换空间&#xff08;Swap space&#xff09;是计算机内存的一种补充&#xff0c;位于硬盘驱动器上。当物理内存不足时&#xff0c;系统会将不活跃的页面移到交换空间中。 交换空间可以帮助系统在以下情况下运行&#xff1a…

devops底层是怎么实现的

DevOps的3大核心基础架构 简而言之&#xff0c;实现DevOps工具链&#xff0c;基本需要3个核心基础架构&#xff1a; SCM配置管理系统 Automation自动化系统 Cloud云&#xff08;或者说可伸缩的、自服务的、虚拟化系统&#xff09; SCM配置管理系统 SCM中所放置的内容又可以再…

[ 一刷完结撒花!! ] Day50 力扣单调栈 : 503.下一个更大元素II |42. 接雨水 | 84.柱状图中最大的矩形

Day50 力扣单调栈 : 503.下一个更大元素II &#xff5c;42. 接雨水 | 84.柱状图中最大的矩形 503.下一个更大元素II第一印象看完题解的思路实现中的困难感悟代码 42. 接雨水第一印象看完题解的思路暴力解法单调栈解法 实现中的困难感悟代码 84.柱状图中最大的矩形第一印象看完…

计算机视觉与机器学习D1

计算机视觉简介 技术背景 了解人工智能方向、热点 目前人工智能的技术方向有&#xff1a; 1、计算机视觉——计算机视觉(CV)是指机器感知环境的能力&#xff1b;这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。物体检测和人脸识别是其比较成功…

Ubuntu20.04 安装微信 【wine方式安装】推荐

安装步骤: 第一步:安装 WineHQ 安装包 先安装wine,根据官网指导安装即可。下载 - WineHQ Wikihttps://wiki.winehq.org/Download_zhcn 如果您之前安装过来自其他仓库的 Wine 安装包,请在尝试安装 WineHQ 安装包之前删除它及依赖它的所有安装包(如:wine-mono、wine-gec…

深度学习二维码识别 计算机竞赛

文章目录 0 前言2 二维码基础概念2.1 二维码介绍2.2 QRCode2.3 QRCode 特点 3 机器视觉二维码识别技术3.1 二维码的识别流程3.2 二维码定位3.3 常用的扫描方法 4 深度学习二维码识别4.1 部分关键代码 5 测试结果6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天…

C++多线程编程(1):线程的创建方式

文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 文章目录 进行与线程C中如何实现多线程创建线程的多种方式无参函数lambda表达式常成员函数not常成员引用函数智能指针仿函数类的普通成员函数综合测试 进行与线程 多线程是指多个线程并发执行的过程。 进程与线程的关系&…

使用Qt实现多人聊天工作室

目录 1、项目背景 2、技术分析 3、架构设计 3、1 服务器架构 3.1.1 模块划分 3.1.2 模块之间的交互 3、2 客户端架构 3.2.1 模块划分 3.2.2 模块之间交互 4、实现过程 4、1 功能实现 4.1.1 用户登录注册功能​编辑 4.1.2 用户主界面功能 4、2 设计实现 4.2.1 登录…

传输层协议-TCP协议

目录 TCP协议格式理解可靠性序号与确认序号16位窗口大小六个标志位连接管理机制三次握手四次挥手 确认应答机制&#xff08;ACK&#xff09;超时空重传机制流量控制滑动窗口拥塞控制延迟应答捎带应答面向字节流粘包问题TCP异常情况TCP小结基于TCP应用层协议TCP/UDP对比用UDP实现…

程序的编译链接以及装载

目录 一、预处理 二、编译 三、汇编 四、链接 五、装载 一、预处理 读取c源程序&#xff0c;对其中的伪指令&#xff08;以#开头的指令&#xff09;和特殊符号进行处理&#xff0c; 伪指令主要包括以下五个方面&#xff1a; 宏定义指令&#xff0c;如#define Name Token…

如何定位el-tree中的树节点当父元素滚动时如何定位子元素

使用到的方法 Element 接口的 scrollIntoView() 方法会滚动元素的父容器&#xff0c;使被调用 scrollIntoView() 的元素对用户可见。 参数 alignToTop可选 一个布尔值&#xff1a; 如果为 true&#xff0c;元素的顶端将和其所在滚动区的可视区域的顶端对齐。相应的 scrollIntoV…

基于冠状病毒群体免疫算法优化概率神经网络PNN的分类预测 - 附代码

基于冠状病毒群体免疫算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于冠状病毒群体免疫算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于冠状病毒群体免疫优化的PNN网络5.测试结果6.参考文献7.Matlab代码 …

再高级的打工人也只是打工人!

再高级的打工人也只是打工人&#xff01; OpenAI CEO 奥特曼被罢免的事情人尽皆知「虽然&#xff0c;今天又复职了。。」&#xff0c;我们能从中学到什么呢&#xff1f; CEO 也能被裁&#xff0c;这应该是最近几年被裁名单里面&#xff0c;职级最高的一个人了吧。你再也不用担…

2023最新最全【Nacos】零基础安装教程

一、下载Nacos1.4.1 二、单机版本安装 2.1 将下载的nacos安装包传输到服务器2.2 解压文件2.3 进入bin目录下 单机版本启动2.4 关闭nacos2.5 访问Nacos地址 IP&#xff1a;8848/nacos 三、集群版本的安装 3.1 复制nacos安装包&#xff0c;修改为nacos8849&#xff0c;nacos88…

cesium 图片旋转

cesium 图片旋转 1、实现思路 用cesium 中 ellipse 方法来加载圆型&#xff0c;改变 material 材质 用 ImageMaterialProperty 属性来加在图片&#xff0c;实时改变rotation&#xff0c;stRotation属性来实现旋转 2、源码实现 <!DOCTYPE html> <html lang"en&…

自定义业务异常处理类加入全局处理器中

自定义业务异常处理类并将其加入全局异常处理器&#xff0c;从而避免业务层直接处理异常造成代码污染&#xff0c;达到业务清晰简洁。 描述 在进行分类模块开发时&#xff0c;删除某个分类时当分类关联了菜品和套餐时&#xff0c;是不允许删除的。我们在管理端删除的时候会提示…

lectin

PSGL-1 ; selectin O-linked glycosylation | Detailed Pedia PSGL-1 has several O-glycans to extend the ligand away from the cell surface. An sLex epitope allows interactions with the receptor for leukocyte localisation. 分类 --Recognition by Animal Lectins…

【linux网络】解读FTP文件传输服务器配置,揭秘百度云下载限速原理

目录 一、FTP文件传输协议 1.1FTP工作原理 1.2两种模式介绍 1.3FTP状态码 1.4FTP的三种用户分类 二、vsftpd软件的介绍 2.1服务端介绍 2.2不同操作系统下的客户端登录操作 三、vsftpd的常见配置 3.1修改默认的命令端口 3.2限制匿名用户登录&#xff08;系统原本是默…

实验五:Java多线程程序设计

一、线程接力 编写一个应用程序&#xff0c;除了主线程外&#xff0c;还有三个线程&#xff1a;first、second和third。first负责模拟一个红色的按钮从坐标&#xff08;10&#xff0c;60&#xff09;运动到&#xff08;100&#xff0c;60&#xff09;&#xff1b;second负责模…