基于适应度相关算法优化概率神经网络PNN的分类预测 - 附代码

基于适应度相关算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于适应度相关算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于适应度相关优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用适应度相关算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于适应度相关优化的PNN网络

适应度相关算法原理请参考:https://blog.csdn.net/u011835903/article/details/119946003

利用适应度相关算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

适应度相关参数设置如下:

%% 适应度相关参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,适应度相关-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/164252.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL 教程 1.2

上期教程网友笔记整理 MySQL 重置密码 如果你忘记 MySQL 密码,可以通过修改 my.cnf 文件添加 skip-grant-tables 来重置密码,步骤如下: 1、打开 my.cnf 配置文件,找到 [mysqld] ,然后在该行下面添加以下参数&#x…

vue2中的插槽

vue2中的插槽 props[数学公式]属性: 各种数据类型值。子组件接收到之后做不同的判断实现不同的效果来实现复用性。 插槽:HTML dom元素。 预留属性、预留插槽。 调用语法:单闭合/双闭合。需要传插槽,就用双闭合;不需要就单双都可以…

Linux - 进一步理解 文件系统 - inode - 机械硬盘

详谈机械磁盘 在上一篇博客当中,已经对 用户级缓冲区 和 系统缓冲区 的区别,和 初步认识 C 库函数 封装的 文件接口这些做了阐述。具体可以参考下述博客: Linux - 用户级缓冲区和系统缓冲区 - 初步理解Linux当中文件系统-CSDN博客 本博客将…

【算法挨揍日记】day21——64. 最小路径和、174. 地下城游戏

64. 最小路径和 64. 最小路径和 题目描述: 给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。 说明:每次只能向下或者向右移动一步。 解题思路: 状态表示&…

量化交易:建立趋势跟踪策略的五个指标

什么是趋势跟踪策略? 趋势跟踪策略是只需需顺势而为的策略,即在价格上涨时买入,在价格开始下跌时卖出。在趋势跟踪策略中,人们的目标不是预测或预测,而只是关注市场上的任何新兴趋势。 趋势是如何出现的?…

毅速丨3D打印透气钢正在被各行业广泛应用

随着制造技术的发展,企业对生产效率和产品品质的进一步提高,3D打印透气钢已逐渐在各行业中广泛应用。传统的透气钢制造方法,如粉末冶金和扩散焊,通常只能加工出透气钢的嵌块,使用时需要进行镶嵌,存在强度不…

十八、Linux任务调度crond和at

1、crond任务调度 crond进行 定时任务的设置 概述 任务调度:是指系统在某个时间执行的特定的命令或程序。 任务调度分类:1.系统工作:有些重要的工作必须周而复始地执行。如病毒扫描等 个别用户工作:个别用户可希望执行某些程序…

Kotlin学习(一)

Kotlin学习&#xff08;一&#xff09; 1.使用IDEA构建Kotlin项目 新建工程即可 我这里选择的Build System是IntelliJ&#xff0c;虽然我没用过但是这是Kotlin基础学习应该不会用到其他依赖 2.Hello World package com.simonfun main(args:Array<String>){println(&q…

list,dict使用方法

list, dict的使用 list的使用&#xff1a; ori_list [1, 2, 3] append: 使用append为列表增加1个元素4 输出增加元素之后的列表 ori_list [1, 2, 3] ori_list.append(4) print(ori_list)extend: 给定列表[8, 7, 6],将ori_list和给定的列表进行合并 输出合并后的列表 ori_l…

统信UOS通过源码安装软件提示“configure: error: cannot run C compiled programs.”错误

1. 问题说明 使用源码的方式安装git软件&#xff0c;安装过程中出现两个错误。 编译错误“cannot run C compiled programs” XC:~/Downloads/git-2.42.1$ ./configure --prefix/home/software/git-2.42.1 configure: Setting lib to lib (the default) configure: Will try…

将word中的表格无变形的弄进excel中

在上篇文章中记录了将excel表拷贝到word中来&#xff1a; 记录将excel表无变形的弄进word里面来-CSDN博客 本篇记录&#xff1a;将word中的表格无变形的弄进excel中。 1.按F12&#xff0c;“另存为...”&#xff0c;保存类型&#xff1a;“单个文件页面”&#xff0c;保存。…

C++ Qt 学习(十):Qt 其他技巧

1. 带参数启动外部进程 QProcess 用于启动外部进程int QProcess::execute(const QString &program, const QStringList &arguments);QObject *parent; ... QString program "./path/to/Qt/examples/widgets/analogclock"; QStringList arguments; argument…

ESP32 MicroPython 蜂鸣器及传感器的使用⑦

ESP32 MicroPython 蜂鸣器及传感器的使用⑦ 1、蜂鸣器奏乐2、实验目的3、实验内容5、实验结果6、小车传感器应用7、实验目的8、实验内容9、参考代码10、实验结果 1、蜂鸣器奏乐 我们小车底板配置有蜂鸣器&#xff0c;下面我们来学习如何去利用蜂鸣器演奏乐曲 2、实验目的 学…

如何将 Docsify 项目部署到 CentOS 系统的 Nginx 中

文章目录 第一步&#xff1a;准备 CentOS 服务器第二步&#xff1a;安装 Node.js 和 Docsify第三步&#xff1a;初始化 Docsify 项目第四步&#xff1a;本地预览 Docsify 项目第五步&#xff1a;配置 Nginx 服务器第六步&#xff1a;重启 Nginx 服务器拓展&#xff1a;使用 HTT…

VisualBox7.0.12 主机和宿舍互PING设置

设置成桥接模式 主机设置 虚拟机设置

day07_数组初识

数组的概述 数组就是用于存储数据的长度固定的容器&#xff0c;保证多个数据的数据类型要一致。 数组适合做一批同种类型数据的存储 数组是属于引用数据类型&#xff0c; 数组变量名中存储的数组在内存中的地址信息。 数组中的元素可以是基本数据类型&#xff0c;也可以是引用…

[qemu逃逸] DefconQuals2018-EC3

前言 一道简单的套壳堆题.原本题目环境为 ubu16, 我这里使用的是 ubu18 设备逆向 qemu-system-x86_64 只开了 Canary 和 NX 保护. 比较简单, 主要逻辑在 mmio_write 里面, 其实现了一个菜单堆, 具有增删改的功能: 但是在释放堆块时并没有置空, 所以这里存在 UAF. 而程序还直…

.Net中Redis的基本使用

前言 Redis可以用来存储、缓存和消息传递。它具有高性能、持久化、高可用性、扩展性和灵活性等特点&#xff0c;尤其适用于处理高并发业务和大量数据量的系统&#xff0c;它支持多种数据结构&#xff0c;如字符串、哈希表、列表、集合、有序集合等。 Redis的使用 安装包Ser…

IIC通信协议

IIC是串行半双工同步总线 I2C总线为两线制&#xff0c;只有两根双向信号线&#xff0c;一根是数据线SDA&#xff0c;另一根是时钟线SCL&#xff0c;IIC总线外接两个上拉电阻作用&#xff1a;在总线处于空闲状态&#xff0c;总线处于高电平状态 IIC总线硬件连接 1、IIC总线支…

tamarin运行

首先我们找到安装tamarin的文件位置&#xff0c;找到以后进入该文件夹下 ubuntuubuntu:~$ sudo find / -name tamarin-prover /home/linuxbrew/.linuxbrew/var/homebrew/linked/tamarin-prover /home/linuxbrew/.linuxbrew/Cellar/tamarin-prover /home/linuxbrew/.linuxbrew/…