(Matalb回归预测)PSO-BP粒子群算法优化BP神经网络的多维回归预测

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

 二、实际运行效果:

 三、部分程序:

四、完整程序+数据+说明文档下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matalb平台编译,将PSO(粒子群算法)与BP神经网络结合,进行数据回归预测

  • 输入训练的数据包含7个特征,1个响应值,即通过7个输入值预测1个输出值(多变量回归预测)

  • 归一化训练数据,提升网络泛化性

  • 通过PSO算法优化BP神经网络的初始权重、初始偏差等参数,记录下最优的网络参数

  • 训练BP网络进行回归预测,将优化前后的网络预测效果进行对比,突出优化的重要性

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

 二、实际运行效果:

 三、部分程序:

clc;
clear;
warning off;
%% 导入数据
Data = table2array(readtable("数据集.xlsx"));
% 本例数据集中包含:
% 1. 总共103个样本(每一行表示一个样本)
% 2. 每个样本7个特征值(即前7列每一列表示样本的一个特征,即输入的变量)
% 3. 每个样本1个响应值(第8列为表示样本的响应值,即被预测的变量)

%% 划分训练集和测试集
Temp = randperm(size(Data,1)); % 打乱数据的顺序,提升模型的泛化性。
InPut_num = 1:1:7; % 输入特征个数,数据表格中前7列为输入值,因此设置为1:1:7,若前5个为输入则设置为1:1:5
OutPut_num = 8; % 输出响应个数,本例仅一个响应值,为数据表格中第8个,若多个响应值参照上行数据格式设置为x:1:y

% 选取前80个样本作为训练集,后23个样本作为测试集,即(1:80),和(81:end)
Train_InPut = Data(Temp(1:80),InPut_num); % 训练输入
Train_OutPut = Data(Temp(1:80),OutPut_num); % 训练输出
Test_InPut = Data(Temp(81:end),InPut_num); % 测试输入
Test_OutPut = Data(Temp(81:end),OutPut_num); % 测试输出

%% 数据归一化
% 将输入特征数据归一化到0-1之间
[~, Ps.Input] = mapminmax([Train_InPut;Test_InPut]',0,1); 
Train_InPut = mapminmax('apply',Train_InPut',Ps.Input);
Test_InPut = mapminmax('apply',Test_InPut',Ps.Input);
% 将输出响应数据归一化到0-1之间
[~, Ps.Output] = mapminmax([Train_OutPut;Test_OutPut]',0,1);
Train_OutPut = mapminmax('apply',Train_OutPut',Ps.Output);
Test_OutPut = mapminmax('apply',Test_OutPut',Ps.Output);

四、完整程序+数据+说明文档下载:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/163166.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

、如何在企业签名、超级签名、tf签名之间做选择

企业签名 (Enterprise Signing): 用途: 适用于企业内部发布应用,不需要经过App Store审核,可以通过企业内部渠道直接分发给员工或内部用户。限制: 仅限于企业内部使用,无法在App Store上发布或向外部用户分发。 超级签…

记一次解决Pyqt6/Pyside6添加QTreeView或QTreeWidget导致窗口卡死(未响应)的新路历程,打死我都想不到是这个原因

文章目录 💢 问题 💢🏡 环境 🏡📄 代码💯 解决方案 💯⚓️ 相关链接 ⚓️💢 问题 💢 我在窗口中添加了一个 QTreeWidget控件 ,但是程序在运行期间,只要鼠标进入到 QTreeWidget控件 内进行操作,时间超过几秒中就会出现窗口 未响应卡死的 状态 🏡 环境 �…

机器视觉工程师吐槽的常见100个名场面

学了后发现真没用,只能越干越多 德创跑的快,苏映视裁的快,上帝说,要有光,我是凌云光。 这群里面有多少从德创跑路的 去年我辛辛苦苦干一年顶两年了,单双休变单休或者无休,节假日全部对半砍。加班…

多聚焦图像融合算法

# File : PerfectFusion.py # Author : ShawnWang # Desc : 多焦点图像融合 # Time : 2023/9/24 08:25 import cv2 import matplotlib.pyplot as plt import numpy as np import pywt from PIL import Image# 基于小波变换的多聚焦图像融合…

基于SSM的古董拍卖系统

基于SSM的古董拍卖系统的设计与实现~ 开发语言:Java数据库:MySQL技术:SpringMyBatisSpringMVC工具:IDEA/Ecilpse、Navicat、Maven 系统展示 主页 拍卖界面 管理员界面 摘要 古董拍卖系统是一个基于SSM框架(Spring …

两数之和 II - 输入有序数组

给你一个下标从 1 开始的整数数组 numbers &#xff0c;该数组已按 非递减顺序排列 &#xff0c;请你从数组中找出满足相加之和等于目标数 target 的两个数。如果设这两个数分别是 numbers[index1] 和 numbers[index2] &#xff0c;则 1 < index1 < index2 < numbers.…

人工智能基础_机器学习044_逻辑回归代码实现与手动计算概率---人工智能工作笔记0084

上面我们已经把逻辑回归的公式,以及,公式对应的图形都画画出来了,然后我们再来看看 如何用代码实现 可以看到上面是代码,咱们自己去写一下 import numpy as np from sklearn.linear_model import LogistieRegression from sklearn import datasets # 训练数据和测试数据拆分…

BGP的基础知识

BGP——边界网关协议 IGP——内部网关协议——OSPF、RIP、ISIS EGP——外部网关协议——EGP、BGP 边界网关协议BGP是一种实现自治系统AS之间的路由可达&#xff0c;并选择最佳路由的路径矢量路由协议。目前在IPV4环境下主要使用BGPV4&#xff0c;目前市场上也存在BGPV4&…

什么是java反射机制?

类的正常加载 反射概述 JAVA反射机制是在运行状态中&#xff0c;对于任意一个类&#xff0c;都能够知道这个类的所有属性和方法&#xff1b;对于任意一个对象&#xff0c;都能够调用它的任意一个方法和属性&#xff1b;这种动态获取的信息以及动态调用对象的方法的功能称为jav…

多因素方差分析(Multi-way Analysis of Variance) R实现

1, data0507 flower 是某种植物在两个海拔和两个气温下的开花高度&#xff0c;采用合适 的统计方法&#xff0c;检验该种植物的开花高度在不同的海拔之间和不同的气温之间有无差异&#xff1f;如果有差异&#xff0c;具体如何差异的&#xff1f;&#xff08;说明依据、结论等关…

网络运维与网络安全 学习笔记2023.11.18

网络运维与网络安全 学习笔记 第十九天 今日目标 冲突域和交换机工作原理、广播域和VLAN原理 VLAN配置、TRUNK原理与配置、HYBRID原理与配置 冲突域和交换机工作原理 冲突域概述 定义 网络设备发送的数据&#xff0c;产生冲突的区域&#xff08;范围&#xff09; 对象 “数…

开源情报 (OSINT)

开源情报 (OSINT)是出于情报目的收集和分析公开数据的行为。 什么是开源数据&#xff1f; 开源数据是公众容易获得或可根据要求提供的任何信息。 OSINT 来源可包括&#xff1a; ▶ 报纸杂志文章以及媒体报道▶ 学术论文和发表的研究▶ 书籍和其他参考资料▶ 社交媒体活动▶…

rabbitmq默认交换机锁绑定的routingkey-待研究

例如这个是我的一个消息队列&#xff0c;它默认绑定的交换机是 什么类型呢? 看到这个图&#xff0c;感觉应该是一个默认的交换机&#xff0c;因为是default exchange 于是来到交换机来看看其他默认的交换机&#xff1a; 这里可以看到默认的交换机是direct&#xff08;应该没…

损失函数(Loss Function)与代价函数(Cost Function)、目标函数(Objective Function)区别

损失函数定义在单个样本上&#xff0c;算的是一个样本的误差。 代价函数定义在整个训练集上&#xff0c;是所有样本误差的平均&#xff0c;也就是损失函数的平均。 目标函数定义为最终需要优化的函数&#xff0c;等于经验风险 结构风险&#xff08;也就是Cost Function 正则化…

UE 调整材质UV贴图长宽比例

首先&#xff0c;为什么要先减去0.5呢&#xff0c;因为缩放的贴图中心在0,0原点&#xff0c;以这个点缩放效果是这样&#xff1a; 它缩放的图案不会在正中间&#xff0c;因为是以0,0点进行缩放的 以这个图的箭头去缩放图片的&#xff0c;所以不能使得缩放后的图片放在正中心 那…

<C++>类和对象下|初始化列表|explicit static|友元|内部类|匿名对象|构造函数的优化

文章目录 1. 初始化列表2. explicit关键字3. 友元3.1 友元函数3.2 友元类 4. static关键字4.1 概念4.2 特性 5.内部类5.1 概念5.2 特性 6. 匿名对象7. 拷贝构造时的优化 1. 初始化列表 在类的构造函数体中&#xff0c;对成员属性写的操作叫做赋值&#xff0c;那么成员的初始化…

深度学习数据集—细胞、微生物、显微图像数据集大合集

最近收集了一大波关于细胞、微生物、显微图像数据集&#xff0c;有细胞、微生物&#xff0c;细菌等。 接下来是每个数据的详细介绍&#xff01;&#xff01; 1、12500张血细胞增强图像&#xff08;JPEG&#xff09;数据集 该数据集包含12500张血细胞增强图像&#xff08;JPE…

实验(三):微程序计数器uPC实验

一、实验内容与目的 实验要求&#xff1a; 利用 CP226 实验仪上的 K16..K23 开关做为 DBUS 的数据&#xff0c;其它开关做为控制信号&#xff0c;实现微程序计数器 uPC 的写入和加1功能。 实验目的&#xff1a; 1、了解模型机中微程序的基本概念。 2、了解 uPC 的结构、工作原理…

windows nodejs 15.0.0下载安装

下载 Node v15.0.0 (Current) | Node.js (nodejs.org) 下载地址 https://nodejs.org/dist/v15.0.0/node-v15.0.0-x64.msi 安装 双击运行 等待安装完成 确认安装成功 管理员运行cmd 查看版本号

微信(小程序开发): 解决播放音乐没有声音的情况 代码不报错的情况下依旧没有声音的解决方案

解决无声的问题 在此之前&#xff0c;确保代码能够正常执行哈&#xff01;发这个其实没什么&#xff0c;就是有些人光写代码不调试出现了这个问题 其实解决方法特别简单 第一步&#xff1a; 打开项目后&#xff0c;点击三个点&#xff0c;然后选择模拟操作 第二步&#xff…