2023年亚太杯数学建模思路 - 案例:异常检测

文章目录

    • 赛题思路
      • 一、简介 -- 关于异常检测
        • 异常检测
        • 监督学习
      • 二、异常检测算法
        • 2. 箱线图分析
        • 3. 基于距离/密度
        • 4. 基于划分思想
  • 建模资料

赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

一、简介 – 关于异常检测

异常检测(outlier detection)在以下场景:

  • 数据预处理
  • 病毒木马检测
  • 工业制造产品检测
  • 网络流量检测

等等,有着重要的作用。由于在以上场景中,异常的数据量都是很少的一部分,因此诸如:SVM、逻辑回归等分类算法,都不适用,因为:

监督学习算法适用于有大量的正向样本,也有大量的负向样本,有足够的样本让算法去学习其特征,且未来新出现的样本与训练样本分布一致。

以下是异常检测和监督学习相关算法的适用范围:

异常检测
  • 信用卡诈骗
  • 制造业产品异常检
  • 数据中心机器异常检
  • 入侵检测
监督学习
  • 垃圾邮件识别
  • 新闻分类

二、异常检测算法

在这里插入图片描述
在这里插入图片描述

import tushare
from matplotlib import pyplot as plt
 
df = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()

近三个月,成交量大于200000就可以认为发生了异常(天量,嗯,要注意风险了……)

在这里插入图片描述
在这里插入图片描述

2. 箱线图分析
import tushare
from matplotlib import pyplot as plt
 
df = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()

在这里插入图片描述
大体可以知道,该股票在成交量少于20000,或者成交量大于80000,就应该提高警惕啦!

3. 基于距离/密度

典型的算法是:“局部异常因子算法-Local Outlier Factor”,该算法通过引入“k-distance,第k距离”、“k-distance neighborhood,第k距离邻域”、“reach-distance,可达距离”、以及“local reachability density,局部可达密度 ”和“local outlier factor,局部离群因子”,来发现异常点。

用视觉直观的感受一下,如图2,对于C1集合的点,整体间距,密度,分散情况较为均匀一致,可以认为是同一簇;对于C2集合的点,同样可认为是一簇。o1、o2点相对孤立,可以认为是异常点或离散点。现在的问题是,如何实现算法的通用性,可以满足C1和C2这种密度分散情况迥异的集合的异常点识别。LOF可以实现我们的目标。

在这里插入图片描述
在这里插入图片描述

4. 基于划分思想

典型的算法是 “孤立森林,Isolation Forest”,其思想是:

假设我们用一个随机超平面来切割(split)数据空间(data space), 切一次可以生成两个子空间(想象拿刀切蛋糕一分为二)。之后我们再继续用一个随机超平面来切割每个子空间,循环下去,直到每子空间里面只有一个数据点为止。直观上来讲,我们可以发现那些密度很高的簇是可以被切很多次才会停止切割,但是那些密度很低的点很容易很早的就停到一个子空间了。

这个的算法流程即是使用超平面分割子空间,然后建立类似的二叉树的过程:

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest

rng = np.random.RandomState(42)

# Generate train data
X = 0.3 * rng.randn(100, 2)
X_train = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-8, high=8, size=(20, 2))

# fit the model
clf = IsolationForest(max_samples=100*2, random_state=rng)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)

# plot the line, the samples, and the nearest vectors to the plane
xx, yy = np.meshgrid(np.linspace(-8, 8, 50), np.linspace(-8, 8, 50))
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.title("IsolationForest")
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)

b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green')
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red')
plt.axis('tight')
plt.xlim((-8, 8))
plt.ylim((-8, 8))
plt.legend([b1, b2, c],
           ["training observations",
            "new regular observations", "new abnormal observations"],
           loc="upper left")
plt.show()

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/161550.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

腾讯云重新注册算不算新用户?算!

腾讯云重新注册算新用户,但有以下限制: 首先,实名认证信息不能沿用老账号的信息,必须使用新的信息进行认证。这是为了确保重新注册的账号能够被视为新用户,并享受到新用户的特权和优惠。 腾讯云双十一领9999代金券 h…

2023亚太杯数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…

java的包装类

目录 1. 包装类 1.1 基本数据类型和对应的包装类 1.2 装箱和拆箱 1.3 自动装箱和自动拆箱 1. 包装类 在Java中,由于基本类型不是继承自Object,为了在泛型代码中可以支持基本类型,Java给每个基本类型都对应了 一个包装类型。 若想了解…

k8s上Pod生命周期、重启策略、容器探测简介

目录 一.Pod的创建过程 二.Pod的终止过程 三.Pod的重启策略(restartPolicy) 1.Always 2.OnFailture 3.Never 4.示例 四.Pod生命周期内的5种状态(相位) 1.Pending 2.Running 3.Succeeded 4.Failed 5.Unknown 五.初始…

centos7安装mongodb

1、下载mongodb https://www.mongodb.com/try/download/community 2、解压 3、重命名 4、创建mongodb的data、logs目录 5、启动mongodb, bin/mongod --port27017 --dbpath/data/program/mongodb/data --logpath/data/program/mongodb/logs/mongodb.log --bind_ip0.0.0.0 --f…

上网行为审计软件能审计到什么

上网行为审计软件是一种用于监控和分析员工在工作时间使用互联网行为的软件工具。这种软件可以帮助企业管理员工在工作时间内的互联网使用情况,以确保员工的行为符合企业规定和法律法规。 域之盾软件---上网行为审计软件可以审计到以下内容: 1、网络访问…

3D建模基础教程:可编辑多边形建模的基础认识

可编辑多边形建模是3D建模中的一种常见方法,它允许用户对模型进行细致的调整和编辑。以下是对可编辑多边形建模的详细介绍: 1、层级概念:在可编辑多边形建模中,有五个层级,分别是点层级、边层级、边界层级、面层级和元…

数字化领导者圆桌对话:创造价值,助力企业数字化经营

近日,神策 2023 数据驱动大会成功举办。 数字化领导者圆桌对话环节,神策数据品牌事业部总经理刘洋、线性资本董事总经理郑灿、前波士顿咨询董事合伙人 & 中国知识开源计划首席布道师陈果与神策数据创始人 & CEO 桑文锋围绕科技创新、营销科技、业…

CCF ChinaSoft 2023 论坛巡礼|软件测试产教研融合论坛

2023年CCF中国软件大会(CCF ChinaSoft 2023)由CCF主办,CCF系统软件专委会、形式化方法专委会、软件工程专委会以及复旦大学联合承办,将于2023年12月1-3日在上海国际会议中心举行。 本次大会主题是“智能化软件创新推动数字经济与社…

观测云助力跨境电商大幅提高加载性能

话不多说,先上结果 什么是用户体验 用户体验基本包含访问网站的性能、可用性和正确性。通俗的讲,就是一把通过用户访问测量【设计者】意图的尺子。 用户体验的基本价值 如果正确实施了终端用户体验,可以第一时间发现,确认影响了…

ROS基础—关于参数服务器的操作

1、rosparam list 获取参数服务器的所有参数。 2、rosparam get /run_id 获取参数的值

【数据结构(二)】队列(2)

文章目录 1. 队列的应用场景和介绍1.1. 队列的一个使用场景1.2. 队列介绍 2. 数组模拟队列2.1. 思路分析2.2. 代码实现 3. 数组模拟环形队列3.1. 思路分析3.2. 代码实现 1. 队列的应用场景和介绍 1.1. 队列的一个使用场景 银行排队的案例: 1.2. 队列介绍 队列是一…

强化学习各种符号含义解释

:状态 : 动作 : 奖励 : 奖励函数 : 非终结状态 : 全部状态,包括终结状态 : 动作集合 ℛ : 奖励集合 : 转移矩阵 : 离散时间步 : 回合内最终时间步 : 时间t的状态 : 时间t动作 : 时间t的奖励,通常为随机量,且由和决定 : 回报 : n步…

虚拟机上安装docker,并安装flink镜像

1. 安装docker 官网步骤:https://docs.docker.com/engine/install/centos/ sudo yum install -y yum-utils sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo yum install docker-ce docker-ce-cli containerd.…

珠海希雷伺服全套(包含算法)方案

下载链接!!https://mp.weixin.qq.com/s?__bizMzU2OTc4ODA4OA&mid2247555038&idx1&sn939a4ad71582abc1f9e93c4d5526fed9&chksmfcfb0409cb8c8d1f74ce7108e20b0310e7399775367a023638624357644dfa4ae435e41c8768&token207079769&l…

【C++】类与对象 III 【 深入浅出理解 类与对象 】

文章内容 前言 :新关键字explicit 的引入一、explicit关键字二、static成员(一)概念(二)特性 三、匿名对象四、友元前言:友元的引入(一)友元的概念友元分为:友元函数 和 …

【django+vue】项目搭建、解决跨域访问

笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~ 【djangovue】项目搭建、解决跨域访问 djangovue介绍vue环境准备vue框架搭建1.创建vue项目2.配置vue项目3.进入项目目录4.运行项目5.项目文件讲解6.vue的扩展库或者插件 django环境准备django框架搭建1.使用conda…

算法通关村第十关-白银挑战数组最大K数

大家好我是苏麟 , 今天带来一道应用快排的题 . 数组中的第K个最大元素 描述 : 给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。 请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。 题目 : Le…

【MyBatisPlus】快速入门

文章目录 1. 简单使用2. 条件构造器 —— 针对于复杂查询3. 自定义SQL4. IService4.1 基本接口方法4.1.1 新增4.1.2 删除4.1.3 修改4.1.4 查找 4.2 开发基础业务接口4.3 开发复杂业务接口4.4 Lambda方法4.5 批量新增 5. 代码生成6. 分页功能6.1 分页插件基本使用6.1 通用分页实…

U-boot(二):主Makefile

本文主要探讨210的主Makefile。 Makefile uboot版本号: VERSION:主板本号 PATCHLEVEL:次版本号 SUBLEVEL:再次版本号 EXTRAVERSION:附加信息 VERSION 1 PATC…