基于黑猩猩算法优化概率神经网络PNN的分类预测 - 附代码

基于黑猩猩算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于黑猩猩算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于黑猩猩优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用黑猩猩算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于黑猩猩优化的PNN网络

黑猩猩算法原理请参考:https://blog.csdn.net/u011835903/article/details/119649041

利用黑猩猩算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

黑猩猩参数设置如下:

%% 黑猩猩参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,黑猩猩-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/161037.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Redis(哈希Hash和发布订阅模式)

哈希是一个字符类型字段和值的映射表。 在Redis中,哈希是一种数据结构,用于存储键值对的集合。哈希可以理解为一个键值对的集合,其中每个键都对应一个值。哈希在Redis中的作用主要有以下几点: 1. 存储对象:哈希可以用…

Linux 进程管理 实时调度类及SMP和NUMA

文章目录 一、 实时调度类分析1.1 实时调度实体sched_rt_entity数据结构1.2 实时调度类rt_sched_class数据结构1.3 实时调度类功能函数 二、SMP和NUMA2.1 SMP(多对称处理器结构,UMA)2.2 NUMA(非一致内存访问结构)2.3 C…

RT-DETR算法优化改进:Inner-IoU基于辅助边框的IoU损失,高效结合 GIoU, DIoU, CIoU,SIoU 等 | 2023.11

本文改进:Inner-IoU引入尺度因子 ratio 控制辅助边框的尺度大小用于计算损失,并与现有的基于 IoU ( GIoU, DIoU, CIoU,SIoU )损失进行有效结合 推荐指数:5颗星 新颖指数:5颗星 RT-DETR魔术师专栏介绍: https://blog.csdn.net/m0_63774211/category_12497375…

MySql的C语言API

创建数据库(开辟堆空间资源) 连接数据库 查询数据库 获取查询结果,获取一行信息 mysql_use_result这个函数并不会真正获取数据,只有当使用mysql_fetch_row才真正获取 数据 mysql_store_result会直接把所有查询结果存储下来 释…

微积分在神经网络中的本质

calculus 在一个神经网络中我们通常将每一层的输出结果表示为: a [ l ] a^{[l]} a[l] 为了方便记录,将神经网络第一层记为: [ 1 ] [1] [1] 对应的计算记录为为: a [ l ] : 第 l 层 a [ j ] : 第 j 个神经…

揭秘“ChatGPT之父”突遭罢免内幕:从开发者大会起,几件事已有征兆

腾讯新闻《潜望》 纪振宇 发自硅谷 美国时间11月17日午间,OpenAI首席执行官,被称为“ChatGPT之父”的山姆奥特曼突遭董事会罢免。 OpenAI在当天发布的官方声明称,董事会启动了一项特别的调查,结论是奥特曼在与董事会沟通过程中没…

基于PLC的污水厌氧处理控制系统(论文+源码)

1. 系统设计 污水厌氧由进水系统通过粗格栅和清污机进行初步排除大块杂质物体以及漂浮物等,到达除砂池中。在除砂池系统中细格栅进一步净化污水厌氧中的细小颗粒物体,将污水厌氧中的细小沙粒滤除后进入氧化沟反应池。在该氧化沟系统中进行生化处理&…

windows 10 更新永久关闭

1 winR 输入:services.msc 编辑: 关闭:

服务器端请求伪造(SSRF)

概念 SSRF(Server-Side Request Forgery,服务器端请求伪造) 是一种由攻击者构造形成的由服务端发起请求的一个安全漏洞。一般情况下,SSRF是要攻击目标网站的内部系统。(因为内部系统无法从外网访问,所以要把目标网站当做中间人来…

Win10关机设置里没有睡眠选项的解决方法

用户想给自己的Win10电脑设置睡眠模式,但是在关机设置里面找不到睡眠选项,导致自己不能顺利完成睡眠模式的设置。接下来小编给大家带来解决Win10关机设置里没有睡眠选项的简单方法,解决后用户就可以看到Win10电脑关机设置中有睡眠选项了。 Wi…

【LeetCode】每日一题 2023_11_18 数位和相等数对的最大和(模拟/哈希)

文章目录 刷题前唠嗑题目:数位和相等数对的最大和题目描述代码与解题思路思考解法偷看大佬题解结语 刷题前唠嗑 LeetCode? 启动!!! 本月已经过半了,每日一题的全勤近在咫尺~ 题目:数位和相等数对的最大和…

云端援手:智能枢纽应对数字资产挑战 ——华为云11.11应用集成管理与创新专区优惠限时购

现新客3.96元起,下单有机会抽HUAWEI P60 Art 福利仅限双十一 机会唾手可得,立即行动! 「有效管理保护应用与数据的同时实现高效互通」——华为云全力满足企业需求,推出全套「应用集成管理与创新」智能解决方案:华为云…

树之手撕红黑树,深入B/B+树

简单说一下二叉搜索树与AVL树 要学红黑树,首先你必须学会二叉搜索树,也就是二叉查找树,如果不会的同学,可以去看我写过的文章里面有 那么这里我们来说一下AVL树 他就是一个平衡二叉搜索树,什么叫平衡呢,就…

openfeign整合sentinel出现异常

版本兼容的解决办法:在为userClient注入feign的接口类型时,添加Lazy注解。 Lazy注解是Spring Framework中的一个注解,它通常用于标记Bean的延迟初始化。当一个Bean被标记为Lazy时,Spring容器在启动时不会立即初始化这个Bean&…

QUIC协议详解

前言协议特点QUIC协议与HTTP/2协议区别QUIC协议的多路复用技术优势QUIC协议在Java中的应用存在的问题 前言 QUIC(Quick UDP Internet Connections)是一种基于 UDP 的传输层协议,由 Google 提出。从协议栈可以看出,QUIC HTTP/2 …

git基本操作(配图超详细讲解)

个人主页:Lei宝啊 愿所有美好如期而遇 目录 创建git本地仓库 配置仓库 认识工作区,暂存区,版本库 修改文件 版本回退 撤销修改 删除文件 创建git本地仓库 要提前说的是,仓库是进⾏版本控制的⼀个⽂件⽬录。我们要想对⽂…

Python语言:随机生成几个数案例分析讲解

背景 在某一节课上,老师使用xx通软件随机生成几个学号,并让对应学号同学回答问题。虽然我对xx通软件没啥好感,不过感觉这个随机生成学号功能挺不错的。今天我用python实现一个这个功能。 其实原理挺简单的,就是就是在一堆数字里随…

伦敦银和美白银的关系

与黄金相似,世界上白银交易的基础就是伦敦白银市场,人们利用设立在伦敦的专们负责清算银行(与黄金的清算银行相同)所开设的账户进行白银保证金交易。在伦敦市场,以美元清算的伦敦白银价格,是以美元买进1金衡…

【广州华锐互动】VR技术助力中小学生安全教育,让学生在虚拟世界中学会自我保护!

随着科技的不断发展,虚拟现实(VR)技术已经逐渐走进我们的生活。在教育领域,VR技术的应用也日益广泛,为传统的教育模式带来了革命性的变革。中小学生安全教育作为学生生活中的重要组成部分,其重要性不言而喻…

LeetCode47-全排列II-剪枝逻辑

参考链接: 🔗:卡尔的代码随想录:全排列II 这里第一层,used只有一个元素为1,代表只取出了1个元素作为排列,第二层used有两个元素为1,代表取出了2个元素作为排列,因为数组有序,所以重复的元素都是挨着的,因此可以使用如下语句去重. 其中visit[i-1]False的话,就是代表…