生成式AI模型量化简明教程

在不断发展的人工智能领域,生成式AI无疑已成为创新的基石。 这些先进的模型,无论是用于创作艺术、生成文本还是增强医学成像,都以产生非常逼真和创造性的输出而闻名。 然而,生成式AI的力量是有代价的—模型大小和计算要求。 随着生成式AI模型的复杂性和规模不断增长,它们需要更多的计算资源和存储空间。 这可能是一个重大障碍,特别是在边缘设备或资源受限的环境上部署这些模型时。 这就是具有模型量化功能的生成式 AI 发挥作用的地方,它提供了一种在不牺牲质量的情况下缩小这些庞大模型的方法。

在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 

1、模型量化简介

简而言之,模型量化(Model Quantization)会降低模型参数数值的精度。 在深度学习模型中,神经网络通常采用高精度浮点值(例如 32 位或 64 位)来表示权重和激活。 模型量化将这些值转换为较低精度的表示形式(例如 8 位整数),同时保留模型的功能。

模型量化在生成式AI中的好处包括:

  • 减少内存占用:模型量化最明显的好处是内存使用量的显着减少。 较小的模型尺寸使得在边缘设备、移动应用程序和内存容量有限的环境中部署生成式AI变得可行。
  • 更快的推理:由于数据大小减少,量化模型运行速度更快。 这种速度的提高对于视频处理、自然语言理解或自动驾驶汽车等实时应用至关重要。
  • 能源效率:缩小模型大小有助于提高能源效率,使得在电池供电设备或在能源消耗令人担忧的环境中运行生成式AI模型变得可行。
  • 降低成本:较小的模型占用空间会降低存储和带宽要求,从而为开发人员和最终用户节省成本。

尽管有其优势,生成式AI中的模型量化也面临着一些挑战:

  • 量化感知训练:准备量化模型通常需要重新训练。 量化感知训练旨在最大限度地减少量化过程中模型质量的损失。
  • 最佳精度选择:选择正确的量化精度至关重要。 精度太低可能会导致显着的质量损失,而精度太高可能无法充分减小模型大小。
  • 微调和校准:量化后,模型可能需要微调和校准以保持其性能并确保它们在新的精度约束下有效运行。

一些生成式AI模型量化的应用示例如下:

  • 设备上的艺术生成:通过量化缩小生成式 AI 模型,艺术家可以创建设备上的艺术生成工具,使它们更易于访问和便携地进行创意工作。
  • 边缘设备上的医疗保健成像:可以部署量化模型以进行实时医学图像增强,从而实现更快、更高效的诊断。
  • 移动终端文本生成:移动应用程序可以提供文本生成服务,减少延迟和资源使用,从而增强用户体验。

2、生成式AI模型量化的代码优化

将模型量化纳入生成式 AI 可以通过 TensorFlow 和 PyTorch 等流行的深度学习框架来实现。 TensorFlow Lite 的量化感知训练(quantization-aware training)和 PyTorch 的动态量化(dynamic quantization)等工具和技术提供了在项目中实现量化的简单方法。

2.1 TensorFlow Lite 量化

TensorFlow 提供了用于模型量化的工具包,特别适合设备上部署。 以下代码片段演示了使用 TensorFlow Lite 量化 TensorFlow 模型:

import tensorflow as tf
 # Load your saved model
converter = tf.lite.TFLiteConverter.from_saved_model("your_model_directory") 
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_model = converter.convert()
open("quantized_model.tflite", "wb").write(tflite_model)

在此代码中,我们首先导入 TensorFlow 库, `tf.lite.TFLiteConverter `用于从模型目录加载保存的模型,将优化设置为 tf.lite.Optimize.DEFAULT 以启用默认量化,最后,我们转换模型并将其保存为量化的 TensorFlow Lite 模型。

2.2 PyTorch 动态量化

PyTorch 提供动态量化,允许你在推理过程中量化模型。 下面是 PyTorch 动态量化的代码片段:

import torch
from torch.quantization import quantize_dynamic
model = YourPyTorchModel()
model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
quantized_model = quantize_dynamic(model, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8)

在此代码中,我们首先导入必要的库,然后通过 YourPyTorchModel()创建PyTorch 模型,将量化配置 (qconfig) 设置为适合模型的默认配置,最后使用 quantize_dynamic 来量化模型,得到量化模型 quantized_model。

3、比较数据:量化模型 vs. 非量化模型

内存占用:

  • 非量化:3.2 GB 内存。
  • 量化:模型大小减少 65%,内存使用量为 1.1 GB。 内存消耗减少了 66%。

推理速度和效率:

  • 非量化:每次推理 38 毫秒,消耗 3.5 焦耳。
  • 量化:每次推理速度加快 22 毫秒(提高 42%),能耗降低 2.2 焦耳(节能 37%)。

输出质量:

  • 非量化:视觉质量(1-10 分值为 8.7)、文本连贯性(1-10 分值为 9.2)。
  • 量化:视觉质量略有下降(7.9,下降 9%),同时保持文本连贯性(9.1,下降 1%)。

推理速度与模型质量:

  • 非量化:25 FPS,质量得分 (Q1) 为 8.7。
  • 量化:以 38 FPS 进行更快的推理(提高 52%),质量得分(第二季度)为 7.9(降低 9%)。

比较数据强调了量化的资源效率优势以及现实应用中输出质量的权衡。

4、生成式AI模型量化的最佳实践

虽然模型量化为在资源有限的环境中部署生成式 AI 模型提供了多种好处,但遵循最佳实践以确保量化工作取得成功至关重要。 以下是一些关键建议:

  • 量化感知训练:从量化感知训练开始,这是一个微调模型以降低精度的过程。 这有助于最大限度地减少量化期间模型质量的损失。 在精度降低和模型性能之间保持平衡至关重要。
  • 精度选择:仔细选择正确的量化精度。 评估模型尺寸减小和潜在质量损失之间的权衡。 你可能需要尝试不同的精度级别才能找到最佳折衷方案。
  • 校准:量化后,进行校准,以确保量化模型在新的精度约束下有效运行。 校准有助于调整模型的行为以与所需的输出保持一致。
  • 测试和验证:彻底测试和验证你的量化模型。 这包括评估其在现实世界数据上的性能、测量推理速度以及将生成的输出的质量与原始模型进行比较。
  • 监控和微调:持续监控量化模型在生产中的性能。 如有必要,可以对模型进行微调,以随着时间的推移保持或提高其质量。 这个迭代过程确保量化模型保持有效。
  • 文档和版本控制:记录量化过程并保留模型版本、校准数据和性能指标的详细记录。 该文档有助于跟踪量化模型的演变,并在出现问题时简化调试。
  • 优化推理管道:关注整个推理管道,而不仅仅是模型本身。 优化输入预处理、后处理和其他组件,以最大限度地提高整个系统的效率。

5、结束语

在生成式AI领域,模型量化是应对模型大小、内存消耗和计算需求挑战的强大解决方案。 通过降低数值精度,同时保持模型质量,量化使生成式 AI 模型能够将其覆盖范围扩展到资源受限的环境。 随着研究人员和开发人员不断微调量化过程,我们预计生成式AI将部署在从移动设备到边缘计算等更加多样化和创新的应用程序中。 在此过程中,关键是在模型大小和模型质量之间找到适当的平衡,释放生成式AI的真正潜力。


原文链接:生成式AI模型量化 - BimAnt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/160652.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java线性并发编程介绍-锁(二)

2.5 重量锁底层ObjectMonitor 需要去找到openjdk,在百度中直接搜索openjdk,第一个链接就是 找到ObjectMonitor的两个文件,hpp,cpp 先查看核心属性:http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/file/69087d08d473…

js/jQuery 的一些常用操作(js/jQuery获取表单元素值 以及 清空元素值的各种实现方式)——附测试例子,拿来即能实现效果

js/jQuery 的一些常用操作(js/jQuery获取表单元素值 以及 清空元素值的各种实现方式)——附测试例子,拿来即能实现效果 1. 前言2. 获取表单元素的值2.1 简单获取元素中的值2.1.1 根据 id 简单取值2.2.2 根据name 简单取值2.1.3 获取单选按钮的…

Python 爬虫入门

文章目录 Python 爬虫入门requests 库beautifulsoup4库函数findall(),find()函数get() 爬虫实例 1:抓小说爬虫实例 2:抓豆瓣 top 250 的电影信息后记 Python 爬虫入门 Python 的爬虫功能使得程序员可以快速抓取并分析网页中的信息&#xff0…

vite2.9.15版本不显示el-table致命问题

1.版本说明 说明:vite版本为2.9.15;element-ui版本为2.15.14。 2.不显示 3.降低elementui版本 说明:不兼容,降低elementui版本为2.8.2 npm i element-ui2.8.2 4.显示

Spring 设计模式-简洁版

Java 中包括以下设计模式: 其中Spring 用到的设计模式 1.简单工厂-BeanFactory 2.工厂方法FactoryBean 3.单例模式Bean实例 4.适配器模式SpringMVC中的HandlerAdatper 5.装饰器模式BeanWrapper 6.代理模式_AOP底层 7.观察者模式-spring的事件监听 8.策略横式exclud…

美国经典人工智能教材第3版出版!

美国经典人工智能教材,人工智能的百科全书《人工智能》(第3版)出版!新增深度学习及人工智能编程等内容,理论阐释结合动手实践。 人工智能 第3版 关于作者 史蒂芬.卢奇(Stephen Lucci)拥有纽约…

python计算脚长 青少年电子学会等级考试 中小学生python编程等级考试一级真题答案解析2022年9月

目录 python字符串输出 一、题目要求 1、编程实现 2、输入输出 二、解题思路 1、案例分析 三、程序代码 四、程序说明 五、运行结果 六、考点分析 七、 推荐资料 1、蓝桥杯比赛 2、考级资料 3、其它资料 python字符串输出 2022年9月 python编程等级考试一级编程…

基于Vue+SpringBoot的高校学生管理系统 开源项目

项目编号: S 029 ,文末获取源码。 \color{red}{项目编号:S029,文末获取源码。} 项目编号:S029,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 学生管理模块2.2 学院课程模块2.3 学…

OpenCV C++ 图像处理实战 ——《OCR字符识别》

OpenCV C++ 图像处理实战 ——《OCR字符识别》 一、结果演示二、tesseract库配置2.1下载编译三、OCR字符识别3.1 文本检测方式3.1.1 RIL_BLOCK3.1.2 RIL_PARA3.1.3 RIL_TEXTLINE3.1.4 RIL_WORD3.1.5 RIL_SYMBOL3.2 英文文本检测3.3 中英文本检测四、源码测试图像下载总结一、结…

【广州华锐互动】VR可视化政务服务为公众提供更直观、形象的政策解读

虚拟现实(VR)技术正在逐渐应用于政务服务领域,为公众提供更加便捷、高效和个性化的服务体验。通过VR眼镜、手机等设备,公众可以在虚拟环境中参观政务服务中心,并根据自己的需求选择不同的办事窗口或事项进行咨询和办理…

【Nacos】配置管理、微服务配置拉取、实现配置热更新、多环境配置

🐌个人主页: 🐌 叶落闲庭 💨我的专栏:💨 c语言 数据结构 javaEE 操作系统 Redis 石可破也,而不可夺坚;丹可磨也,而不可夺赤。 Nacos 一、nacos实现配置管理1.1 统一配置管…

圆弧插补-逐点比较法

圆弧插补-逐点比较法 逐点比较法直线插补流程 逐点比较法直线插补流程 逐点比较法第I象限逆圆插补 在圆弧加工过程中,要描述刀具位置与被加工圆弧之间的相对位置关系,可用动点到圆心的距离大小来反映。 如下图所示,假设被加工零件的轮廓为第…

【案例分享】BenchmarkSQL 5.0 压测 openGauss 5.0.0

一、前言 本次BenchmarkSQL 压测openGauss仅作为学习使用压测工具测试tpcc为目的,并不代表数据库性能如本次压测所得数据。实际生产性能压测,还需结合服务器软硬件配置、数据库性能参数调优、BenchmarkSQL 配置文件参数相结合,是一个复杂的过…

redis集群-主从复制

目录 一、主从复制概念二、单机安装Redis2.1、安装 Redis 需要的软件 gcc 和 tcl2.2、上传Redis压缩包2.3、编辑 redis.conf 文件2.4、执行安装 Redis 命令2.5、注意防火墙配置 三、主从复制 - 环境搭建3.1、配置一个 master 节点,两个 slave 节点3.2、配置 redis63…

数组的访问

注意:如果一个数组对象指向null,那么该数组对象中不存储任何地址。 这时使用System.out.println(a); System.out.println(a[0]);会出现空指针报错

SHELL中的循环语句

快捷查看指令 ctrlf 进行搜索会直接定位到需要的知识点和命令讲解(如有不正确的地方欢迎各位小伙伴在评论区提意见,博主会及时修改) 循环结构 连续出现的功能性代码 shell循环有四种: while 条件成立,循环就开始 直到循环条件不满足或者跳出…

Vatee万腾科技引领创新潮流:Vatee数字化探索的前沿之光

在Vatee万腾科技引领创新潮流的浪潮中,我们见证了一场数字化探索的前沿之光。Vatee万腾以其卓越的科技实力和创新精神,成为数字化时代的领军者,为创新潮流注入了强大动力。 Vatee万腾积极探索数字化的前沿,不断挑战科技的极限。他…

2023-11-18 Android Linux资源限制命令 ulimit,比如ulimit -d 是设置进程占用的最大数据段大小,默认是unlimited。

一、通过ulimit -a 命令可以查看当前的各种资源限制,比如ulimit -d 是 进程占用的最大数据段大小。 # ulimit -a -t: time(cpu-seconds) unlimited -f: file(blocks) unlimited -c: coredump(blocks) 0 -d: data(KiB) unlimited -s:…

VS2022 配置 OpenCV并开始第一个程序

VS2022安装 首先下载 VisualStudioSetup.exe 下载连接:Visual Studio 2022 IDE - 适用于软件开发人员的编程工具 点击上面的链接即可进入到下载页面。进入到下载页面,可看到有几个版本可选,如下: 我选择的是企业版:E…

Angular菜单项激活状态保持

菜单项激活状态保持 需求描述详细需求 解决方案 需求描述 如果有个需求,让你实现一个导航栏,点击不同菜单,图表会有不同变化,页面刷新后,该菜单状态仍旧保持,实现方法如下: 例图,有…