在上一篇文章中我们介绍了变量与数据的交互方式-move,通过底层原理我们知道Rust 永远也不会自动创建数据的 “深拷贝”。因此,任何 自动的复制可以被认为对运行时性能影响较小。
但是如果我们 确实需要深度复制 String
中堆上的数据,而不仅仅是栈上的数据,可以使用一个叫做 clone
的通用函数。
这就是变脸与数据的第二种交互方式-clone
变量与数据的交互方式-clone
首先看下述代码,就是clone
的例子:
fn main() {
let str1 = String::from("hello");
let str2 = s1.clone();
println!("str1 = {}, str2 = {}", str1, str2);
}
上述代码不会抛出异常,并且明确的产生了图1中的行为,这里堆上的数据 确实被复制了。
这里需要说一下有一个小例外,比如下述代码:
fn main() {
let x = 5;
let y = x;
println!("x = {}, y = {}", x, y);
}
这段代码似乎与我们刚刚学到的内容相矛盾:没有调用 clone
,不过 x
依然有效且没有被移动到 y
中。
原因就是像整型这样的在编译时已知大小的类型被整个存储在栈上,所以拷贝其实际的值是快速的。这意味着没有理由在创建变量 y
后使 x
无效。换句话说,这里没有深浅拷贝的区别,所以这里调用 clone
并不会与通常的浅拷贝有什么不同,我们可以不用管它。
Rust 有一个叫做 Copy
trait 的特殊注解,可以用在类似整型这样的存储在栈上的类型上(后续文章会详细介绍trait)。如果一个类型拥有 Copy
trait,一个旧的变量在将其赋值给其他变量后仍然可用。Rust 不允许自身或其任何部分实现了 Drop
trait 的类型使用 Copy
trait。如果我们对其值离开作用域时需要特殊处理的类型使用 Copy
注解,将会出现一个编译时错误。
那么什么类型是 Copy
的呢?可以查看给定类型的文档来确认,不过作为一个通用的规则,任何简单标量值的组合可以是 Copy
的,不需要分配内存或某种形式资源的类型是 Copy
的。如下是一些 Copy
的类型:
- 所有整数类型,比如
u32
。 - 布尔类型,
bool
,它的值是true
和false
。 - 所有浮点数类型,比如
f64
。 - 字符类型,
char
。 - 元组,当且仅当其包含的类型也都是
Copy
的时候。比如,(i32, i32)
是Copy
的,但(i32, String)
就不是。