Python数据分析实战① Python实现数据可视化

文章目录

    • 一、数据可视化介绍
    • 二、matplotlib和pandas画图
      • 1.matplotlib简介和简单使用
      • 2.matplotlib常见作图类型
      • 3.使用pandas画图
      • 4.pandas中绘图与matplotlib结合使用
    • 三、订单数据分析展示
    • 四、Titanic灾难数据分析显示

一、数据可视化介绍

数据可视化是指将数据放在可视环境中、进一步理解数据的技术,可以通过它更加详细地了解隐藏在数据表面之下的模式趋势相关性

Python提供了很多数据可视化的库:

  • matplotlib
    是Python基础的画图库,官网为https://matplotlib.org/,在案例地址https://matplotlib.org/gallery/index.html中介绍了很多种类的图和代码示例。
  • pandas
    是在matplotlib的基础上实现画图的,官网为https://pandas.pydata.org/。
  • matlpotlib和pandas结合
    利用pandas进行数据读取、数据清洗和数据选取等操作,再使用matlpotlib显示数据。

二、matplotlib和pandas画图

1.matplotlib简介和简单使用

matplotlib是Python最著名的绘图库,它提供了一整套和Matlab相似的命令API,十分适合进行交互式制图;也可以方便地将它作为绘图控件,嵌入GUI应用程序中。
文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源代码。如果需要绘制某种类型的图,只需要在这个页面中进行简单的浏览、复制、粘贴,就能实现画图。
https://matplotlib.org/gallery.html中有大量的缩略图案例可以使用。

matplotlib画图的子库:

  • pyplot子库
    提供了和matlab类似的绘图API,方便用户快速绘制2D图表。
  • pylab模块
    其中包括了许多numpy和pyplot中常用的函数,方便用户快速进行计算和绘图,可以用于IPython中的快速交互式使用。

使用matplotlib快速绘图导入库和创建绘图对象如下:

import matplotlib.pyplot as plt

plt.figure(figsize=(8,4))

创建绘图对象时,同时使它成为当前的绘图对象。
通过figsize参数可以指定绘图对象的宽度和高度,单位为英寸;
dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80。
因此本例中所创建的图表窗口的宽度为8 * 80 = 640像素。

也可以不创建绘图对象直接调用plot方法绘图,matplotlib会自动创建一个绘图对象。
如果需要同时绘制多幅图表的话,可以给figure传递一个整数参数指定图标的序号,如果所指定序号的绘图对象已经存在的话,将不创建新的对象,而只是让它成为当前绘图对象。

pyplot画图简单使用如下:

import numpy as np
import matplotlib.pyplot as plt # 首先载入matplotlib的绘图模块pyplot,并且重命名为plt

x = np.linspace(0, 10, 1000)  

y = np.sin(x)
z = np.cos(x**2)

plt.figure(figsize=(8,4))   #2 创建绘图对象

plt.plot(x,y,label="$sin(x)$",color="red",linewidth=2)
plt.plot(x,z,"b--",label="$cos(x^2)$") 

plt.xlabel("Time(s)") 
plt.ylabel("Volt")
plt.title("PyPlot First Example")
plt.ylim(-1.2,1.2)
plt.legend()

plt.show()

显示:
python plt pyplot simple

其中:

plt.plot(x,y,label="$sin(x)$",color="red",linewidth=2)
plt.plot(x,z,"b--",label="$cos(x^2)$")

第一行将x、y数组传递给plot之后,用关键字参数指定各种属性:

  • label
    给所绘制的曲线取一个名字,用于在图示(legend)中显示;
    在字符串前后添加$符号,就会使用内置的latex引擎绘制数学公式。
  • color
    指定曲线的颜色:颜色可以用英文单词,或者以#字符开头的三个16进制数,例如#ff0000表示红色,或者用值在0到1范围之内的三个元素的元组表示,例如(1.0, 0.0, 0.0)也表示红色。
  • linewidth
    指定曲线的宽度,可以不是整数,也可以使用缩写形式的参数名lw
  • 曲线样式
    第三个参数b--指定曲线的颜色和线型,它通过一些易记的符号指定曲线的样式,其中b表示蓝色,--表示线型为虚线。
    在IPython中输入plt.plot?可以查看格式化字符串以及各个参数的详细说明。
plt.xlabel("Time(s)") 
plt.ylabel("Volt")
plt.title("PyPlot First Example")
plt.ylim(-1.2,1.2)
plt.legend()

通过一系列函数设置当前Axes对象的各个属性:

  • xlabel、ylabel
    分别设置X、Y轴的标题文字。
  • title
    设置子图的标题。
  • xlim、ylim
    分别设置X、Y轴的显示范围。
  • legend
    显示图示,即图中表示每条曲线的标签(label)和样式的矩形区域。

最后调用plt.show()显示出绘图窗口。

一个绘图对象(figure)可以包含多个轴(axis),在Matplotlib中用轴表示一个绘图区域,可以将其理解为子图。上面的第一个例子中,绘图对象只包括一个轴,因此只显示了一个轴(子图Axes)。可以使用subplot函数快速绘制有多个轴的图表。
subplot函数的调用形式如下:

subplot(numRows, numCols, plotNum)

subplot将整个绘图区域等分为numRows行和numCols列个子区域,然后按照从左到右、从上到下的顺序对每个子区域进行编号,左上的子区域的编号为1。
如果numRows、numCols和plotNum这三个数都小于10的话,可以把它们缩写为一个整数,例如subplot(323)subplot(3,2,3)是相同的。
subplot在plotNum指定的区域中创建一个轴对象,如果新创建的轴和之前创建的轴重叠,之前的轴将被删除。

如下:

for idx, color in enumerate("rgbyck"):
    plt.subplot(320+idx+1, facecolor=color)
plt.show()

显示:
python plt pyplot subplot

可以看到:
创建3行2列共6个轴,通过facecolor参数给每个轴设置不同的背景颜色。

如果希望某个轴占据整个行或者列的话,可以如下:

plt.subplot(221) # 第一行的左图
plt.subplot(222) # 第一行的右图
plt.subplot(212) # 第二整行
plt.show()

显示:
python plt pyplot subplot whole

再举一个创建子图的例子:

plt.figure(1) # 创建图表1
plt.figure(2) # 创建图表2
ax1 = plt.subplot(211) # 在图表2中创建子图1
ax2 = plt.subplot(212) # 在图表2中创建子图2
 
x = np.linspace(0, 3, 100)
for i in range(5):
    plt.figure(1) # 选择图表1
    plt.plot(x, np.exp(i*x/3))
    plt.sca(ax1) # 选择图表2的子图1,将当前轴实例设置为ax
    plt.plot(x, np.sin(i*x))
    plt.sca(ax2) # 选择图表2的子图2
    plt.plot(x, np.cos(i*x))
plt.show()

显示:
python plt pyplot subplot for

首先通过figure()创建了两个图表,它们的序号分别为1和2;
然后在图表2中创建了上下并排的两个子图,并用变量ax1和ax2保存。
在循环中:
先调用figure(1)让图表1成为当前图表,并在其中绘图。
然后调用sca(ax1)sca(ax2)分别让子图ax1和ax2成为当前子图,并在其中绘图。
当它们成为当前子图时,包含它们的图表2也自动成为当前图表,因此不需要调用figure(2)依次在图表1和图表2的两个子图之间切换,逐步在其中添加新的曲线即可。

其中,twinx()可以为图增加纵坐标轴,使用如下:

x = np.arange(1, 21, 0.1)
 
y1 = x * x
y2 = np.log(x)
 
plt.plot(x, y1)
 
# 添加一条y轴的坐标轴
plt.twinx()
plt.plot(x, y2)
 
plt.show()

显示:
python plt pyplot twinx

进一步使用如下:

import numpy as np
import matplotlib.pyplot as plt
 
x = np.arange(1, 20, 1)
y1 = x * x
y2 = np.log(x)
 
fig = plt.figure()
ax1 = fig.add_subplot(111)

ax1.plot(x, y1, label = "$y1 = x * x$", color = "r")
ax1.legend(loc = 0)
# 设置对应坐标轴的名称
ax1.set_ylabel("y1")
ax1.set_xlabel("Compare y1 and y2")
 
# 设置x轴刻度的数量
ax = plt.gca()
ax.locator_params("x", nbins = 20)
 
# 添加坐标轴,并在新添加的坐标轴中画y2 = log(x)图像
ax2 = plt.twinx()
ax2.set_ylabel("y2")
ax2.plot(x, y2, label = "$y2 = log(x)$")
ax2.legend(loc = 0)
 
plt.show()

显示:
python plt pyplot twinx detail

2.matplotlib常见作图类型

画图在工作中在所难免,尤其在进行数据探索时显得尤其重要,matplotlib常见的一些作图种类如下:

  • 散点图
  • 条形图
  • 饼图
  • 三维图

先导入库和基础配置如下:

from __future__ import division
from numpy.random import randn
import numpy as np
import os
import matplotlib.pyplot as plt
np.random.seed(12345)
plt.rc('figure', figsize=(10, 6))
from pandas import Series, DataFrame
import pandas as pd
np.set_printoptions(precision=4)

get_ipython().magic(u'matplotlib inline')
get_ipython().magic(u'pwd')

打印:

'XXX\\3_Visualization_Of_Data_Analysis\\basicuse'

基础画图如下:

# matplotlib创建图表
plt.plot([1,2,3,2,3,2,2,1])
plt.show()

plt.plot([4,3,2,1],[1,2,3,4])
plt.show()

显示:
python plt pyplot type basic

画三角函数曲线如下:

# 画简单的图形
from pylab import *
x=np.linspace(-np.pi,np.pi,256,endpoint=True)
c,s=np.cos(x),np.sin(x)
plot(x,c, color="blue", linewidth=2.5, linestyle="-", label="cosine")
plot(x,s,color="red", linewidth=2.5, linestyle="-", label="sine")
show()

显示:
python plt pyplot type sincos

画散点图如下:

# 散点图
from pylab import *
n = 1024
X = np.random.normal(0,1,n)
Y = np.random.normal(0,1,n)
scatter(X,Y)
show()

显示:
python plt pyplot type scatter

画条形图如下:

#条形图
from pylab import *
n = 12
X = np.arange(n)
Y1 = (1-X/float(n)) * np.random.uniform(0.5,1.0,n)
Y2 = (1-X/float(n)) * np.random.uniform(0.5,1.0,n)
bar(X, +Y1, facecolor='#9999ff', edgecolor='white')
bar(X, -Y2, facecolor='#ff9999', edgecolor='white')
for x,y in zip(X,Y1):
 text(x+0.4, y+0.05, '%.2f' % y, ha='center', va= 'bottom')
ylim(-1.25,+1.25)
show()

显示:
python plt pyplot type bar

饼图如下:

#饼图
from pylab import *
n = 20
Z = np.random.uniform(0,1,n)
pie(Z)
show()

显示:
python plt pyplot type pie

画立体图如下:

#画三维图
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from pylab import *
fig=figure()
ax=Axes3D(fig)
x=np.arange(-4,4,0.1)
y=np.arange(-4,4,0.1)
x,y=np.meshgrid(x,y)
R=np.sqrt(x**2+y**2)
z=np.sin(R)
ax.plot_surface(x,y,z,rstride=1,cstride=1,cmap='hot')
show()

显示:
python plt pyplot type Axes3D

画其他简单图形如下:

#更多简单的图形
x = [1,2,3,4]
y = [5,4,3,2]

plt.figure()
plt.subplot(2,3,1)
plt.plot(x, y)

plt.subplot(232)
plt.bar(x, y)

plt.subplot(233)
plt.barh(x, y)

plt.subplot(234)
plt.bar(x, y)
y1 = [7,8,5,3]
plt.bar(x, y1, bottom=y, color = 'r')

plt.subplot(235)
plt.boxplot(x)

plt.subplot(236)
plt.scatter(x,y)

plt.show()

显示:
python plt pyplot type other

3.使用pandas画图

pandas中画图的主要类型包括:

  • 累和图
  • 柱状图
  • 散点图
  • 饼图
  • 矩阵散点图

先导入所需要的库:

from __future__ import division
from numpy.random import randn
import numpy as np
import os
import matplotlib.pyplot as plt
np.random.seed(12345)
from pandas import Series, DataFrame
import pandas as pd
%matplotlib inline

在pandas中,有行标签、列标签和分组信息等,如果使用matplotlib画图,可能需要一大堆的代码,现在调用Pandas的plot()方法即可简单实现。

画简单线图如下:

#线图 
s = Series(np.random.randn(10).cumsum(), index=np.arange(0, 100, 10))
s.plot()
plt.show()

显示:
python pandas type line series

pandas.Series.plot()的常见参数及说明如下:

参数说明
label用于图例的标签
ax要在其上进行绘制的matplotlib subplot对象,如果没有设置,则使用当前matplotlib subplot
style将要传给matplotlib的风格字符串,例如'ko-'
alpha图表的填充不透明(0-1)
kind可以是'line''bar''barh''kde'
logy在Y轴上使用对数标尺
use_index将对象的索引用作刻度标签
rot旋转刻度标签(0-360)
xticks用作X轴刻度的值
yticks用作Y轴刻度的值
xlimX轴的界限
ylimY轴的界限
grid显示轴网格线

Pandas的大部分绘图方法都有一个可选的ax参数,它可以是一个matplotlib的subplot对象,从而能够在网络布局中更为灵活地处理subplot的位置。DataFrame的plot方法会在一个subplot中为各列绘制一条线,并自动创建图例。

画多列线图如下:

df = DataFrame(np.random.randn(10, 4).cumsum(0),
               columns=['A', 'B', 'C', 'D'],
               index=np.arange(0, 100, 10))
df.plot()
plt.show()

显示:
python pandas type line dataframe

相对于Series,DataFrame还有一些用于对列进行灵活处理的选项,例如要将所有列都绘制到一个subplot中还是创建各自的subplot等,具体如下:

参数说明
subplots将各个DataFrame列绘制到单独的subplot中
sharex如果subplots=True,则共用同一个X轴,包括刻度和界限
sharey如果subplots=True,则共用同一个Y轴,包括刻度和界限
figsize表示图像大小的元组
title表示图像标题的字符串
legend添加—个subplot图例(默认为True)
sort_columns以字母表顺序绘制各列,默认使用前列顺序

画简单累和图如下:

#线图 CUM
plt.close('all')

s = Series(np.random.randn(10).cumsum(), index=np.arange(0, 100, 10))
s.plot()
plt.show()

显示:
python pandas type cumsum series

画多列的类和图如下:

df = DataFrame(np.random.randn(10, 4).cumsum(0),
               columns=['A', 'B', 'C', 'D'],
               index=np.arange(0, 100, 10))
df.plot()
plt.show()

显示:
python pandas type cumsum dataframe

当提升了数据规模之后,累和图如下:

s = pd.Series([2, np.nan, 5, -1, 0])
print(s)

print(s.cumsum())

#画累和图
ts=pd.Series(np.random.randn(1000),index=pd.date_range('1/1/2000',periods=1000))
ts=ts.cumsum()
ts.plot()
plt.show()
df=pd.DataFrame(np.random.randn(1000,4),index=ts.index,columns=list('ABCD'))

# cumulative意为累计、累积,这个函数可以返回一个累计值,经常会遇到月累计、年累计这种指标,会用这个函数
df=df.cumsum()
df.plot()
plt.show()

打印:

0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64
0    2.0
1    NaN
2    7.0
3    6.0
4    6.0
dtype: float64

显示:
python pandas type cumsum complex

画Series柱状图如下:

#柱形图
fig, axes = plt.subplots(2, 1)
data = Series(np.random.rand(16), index=list('abcdefghijklmnop'))
data.plot(kind='bar', ax=axes[0], color='r', alpha=0.7)
data.plot(kind='barh', ax=axes[1], color='g', alpha=0.7)
plt.show()

显示:
python pandas type bar series

DataFrame画柱状图:

df = DataFrame(np.random.rand(6, 4),
               index=['one', 'two', 'three', 'four', 'five', 'six'],
               columns=pd.Index(['A', 'B', 'C', 'D'], name='Genus'))

df.plot(kind='bar') #图例

plt.figure()

df.plot(kind='barh', stacked=True, alpha=0.5)

plt.show()

显示:
python pandas type bar dataframe

可以看到:
对于DataFrame,柱形图会将每一行的值分为一组;
DataFrame的各列名称都被用作了图例的标题;
设置stacked=True即可为DataFrame生成堆积柱形图,这样每行的值就会被堆积在一起。

餐馆小费数据如下:
python pandas type bar tipdata

进行数据可视化如下:

tips = pd.read_csv('tips.csv') # 各数据点的百分比
party_counts = pd.crosstab(tips.day, tips['size'])  #size聚会人数
print(party_counts)

party_counts = party_counts.iloc[:, 2:5] # 选取一部分数据
print(party_counts)

party_pcts = party_counts.div(party_counts.sum(1).astype(float), axis=0) # 转换成百分比, 1 代表维度 行的方向
print(party_pcts)
party_pcts.plot(kind='bar', stacked=True)   #每天的高度都是1
plt.show()

打印:

size  1   2   3   4  5  6
day                      
Fri   1  16   1   1  0  0
Sat   2  53  18  13  1  0
Sun   0  39  15  18  3  1
Thur  1  48   4   5  1  3
size   3   4  5
day            
Fri    1   1  0
Sat   18  13  1
Sun   15  18  3
Thur   4   5  1
size         3        4         5
day                              
Fri   0.500000  0.50000  0.000000
Sat   0.562500  0.40625  0.031250
Sun   0.416667  0.50000  0.083333
Thur  0.400000  0.50000  0.100000

显示:
python pandas type bar tipdata show

画较复杂的柱状图如下:

#画柱状图
df2 = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df2.plot(kind='bar') #分开并列线束
df2.plot(kind='bar', stacked=True) #四个在同一个里面显示 百分比的形式
df2.plot(kind='barh', stacked=True)#纵向显示
plt.show()
df4=pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':np.random.randn(1000)-1},columns=list('abc'))
df4.plot(kind='hist', alpha=0.5)
df4.plot(kind='hist', stacked=True, bins=20)
df4['a'].plot(kind='hist', orientation='horizontal',cumulative=True) #cumulative是按顺序排序
plt.show()
#Area Plot
df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df.plot(kind='area')
df.plot(kind='area',stacked=False)
plt.show()

显示:
python pandas type bar dataframe complex

直方图histogram:
是一种可以对值频率进行离散化显示的柱状图。数据点被拆分到离散的、间隔均匀的面元中,绘制的是各面元中数据点的数量。
调用Series.hist()即可实现,在之后调用plot时加上参数kind='kde'即可生成一张密度图。

根据小费数据画直方图如下:

# 直方图--给小费占总费用的比例的分布图
plt.figure()

tips['tip_pct'] = tips['tip'] / tips['total_bill']  # 增加一个新的列
tips['tip_pct'].hist(bins=50) # 分为50个区间 

plt.figure()

显示:
python pandas type hist tipdata

在统计学中,核密度估计(KDE)是一种估计随机变量概率密度函数(PDF)的非参数方法,利用高斯核生成核密度估计图如下:

comp1 = np.random.normal(0, 1, size=200)  # N(0, 1)  模拟出 0,1 的正态分布数据 0,期望值, 1 方差值
comp2 = np.random.normal(10, 2, size=200)  # 10,期望值, 2 方差值  方差值大,跨度就大些
values = Series(np.concatenate([comp1, comp2]))
values.hist(bins=100, alpha=0.3, color='k', density=True)
values.plot(kind='kde', style='k--')

显示:
python pandas type hist kde

根据小费数据画密度图如下:

tips['tip_pct'].plot(kind='kde')  # 利用高斯核生成核密度估计图

plt.figure()

显示:
python pandas type hist kde tipdata

散点图scatter plot:
是观察两个一维数据序列之间的关系的有效手段,研究两个变量的关系,特别是是否有线性或曲线相关性。matplotlib的scatter方法是绘制散布图的主要方法。利用plt.scatter()即可轻松绘制一张简单的散布图。pandas也提供了能从DataFrame创建散步图矩阵的scatter_matrix()方法,还支持在对角线上放置变量的直方图或密度图。

画简单散点图如下:

df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
df.plot(kind='scatter', x='a', y='b')
df.plot(kind='scatter', x='a', y='b',color='DarkBlue', label='Group 1')
plt.show()

显示:
python pandas type scatter simple

画散点矩阵图和直方图如下:

df = pd.DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
pd.plotting.scatter_matrix(df, alpha=0.2)

显示:‘
python pandas type scatter matrix hist

画三点矩阵图和密度图如下:

df = pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd'])
pd.plotting.scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')
plt.show()

显示:
python pandas type scatter matrix kde

宏观经济数据macrodata.csv如下:
python pandas type scatter macrodata

读取和选取数据如下:

macro = pd.read_csv("macrodata.csv")
data = macro[['cpi', 'm1', 'tbilrate', 'unemp']]
trans_data = np.log(data).diff().dropna()
trans_data[-5:]
print(trans_data[-5:])
plt.figure()

打印:

          cpi        m1  tbilrate     unemp
198 -0.007904  0.045361 -0.396881  0.105361
199 -0.021979  0.066753 -2.277267  0.139762
200  0.002340  0.010286  0.606136  0.160343
201  0.008419  0.037461 -0.200671  0.127339
202  0.008894  0.012202 -0.405465  0.042560

<Figure size 432x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

画散点图和散点矩阵图如下:

plt.scatter(trans_data['m1'], trans_data['unemp'])
plt.title('Changes in log %s vs. log %s' % ('m1', 'unemp'))

pd.plotting.scatter_matrix(trans_data, diagonal='kde', color='k', alpha=0.3)
plt.show()

显示:
python pandas type scatter macrodata show

可以简单看出各经济变量之间是否存在关系。

画饼图示意如下:

#饼图
df = pd.DataFrame(3 * np.random.rand(4, 2), index=['a', 'b', 'c', 'd'], columns=['x', 'y'])
df.plot(kind='pie', subplots=True, figsize=(8, 4))
df.plot(kind='pie', subplots=True,autopct='%.2f',figsize=(8, 4)) # 显示百分比
plt.show()

显示:
python pandas type pie

4.pandas中绘图与matplotlib结合使用

有时候想方便地集成的绘图方式,比如df.plot(),但是又想加上matplotlib的很多操
作来增强图片的表现力,这时可以将两者结合。

构造数据如下:

df=pd.DataFrame(np.random.randn(3,4),index=list('123'),columns=list('ABCD'))
df2=pd.DataFrame(np.random.randn(4,4),index=list('1234'),columns=list('ABCD'))
display(df, df2)

显示:
python plt pandas combine data

可视化如下:

fig, axes = plt.subplots(2, 1)
df.plot(ax=axes[0])
df2.plot(ax=axes[1])
axes[0].set_title('3points')
axes[1].set_title('4points')

显示:
python plt pandas combine plot

三、订单数据分析展示

主要作图包括订单与GMV趋势、商家趋势、订单来源分布、类目占比,涉及折线图、饼图、堆积柱形图、组合图等类型,目标是综合使用pandas和matplotlib。

订单数据.csv如下:
python plt pandas practice order orderdata

导库和读取数据如下:

#导入库
import pandas as pd
import matplotlib.pyplot as plt

# plt.rcParams['font.sans-serif'] = ['SimHei']  #显示中文标签
# plt.rcParams['axes.unicode_minus'] = False  #显示符号

#读取数据
orders = pd.read_excel("订单数据.xlsx")
orders['付款时间'] = orders['付款时间'].astype('str')  #方便作图,将日期改为字符串格式

不同日期订单金额折线图如下:

#折线图
data1 = orders.groupby('付款时间')['支付金额'].sum()  #处理数据
x = data1.index   #x值
y = data1.values  #y值

plt.title('GMV走势')  #图表标题
plt.plot(x,y,label='GMV',color='red')    #label是图例,color是线条颜色
plt.legend(loc=1)  #显示图例,loc设置图例展示位置,默认为0(最优位置)、1右上角、2左上角
plt.show()   #显示图

显示:
python plt pandas practice order line

可以看出不同时间订单金额的变化趋势,找出哪些天订单金额较高、哪些天较低。

还可以用柱状图显示:

#柱形图
data1 = orders.groupby('付款时间')['支付金额'].sum()  #处理数据
x = data1.index   #x值
y = data1.values  #y值

plt.title('GMV走势')  #图表标题
plt.bar(x,y,label='GMV',color='green')    #其实很简单,只要把plot换成bar
plt.legend(loc=1)  #显示图例,loc设置图例展示位置,默认为0(最优位置)、1右上角、2左上角
plt.show()   #显示图

显示:
python plt pandas practice order bar

还可以用饼图直观看出各天所占的比例:

#饼图
data1 = orders.groupby('付款时间')['支付金额'].sum()  #处理数据
x = data1.index   #x值
y = data1.values  #y值

plt.title('GMV饼图')  #图表标题
plt.axis('equal')   #正圆,饼图会默认是椭圆
plt.pie(y,labels=x,autopct='%1.1f%%',\
        colors=['green','red','skyblue','blue'])    #labels是标签,autopct是占比保留1位小数
plt.show()   #显示图

显示:
python plt pandas practice order pie

还可以为柱形图添加数据标签,如下:

# 为柱形图添加数据标签
data1 = orders.groupby('付款时间')['支付金额'].sum()  #处理数据
x = data1.index   #x值
y = data1.values  #y值

plt.title('GMV走势')  #图表标题
plt.bar(x,y,label='GMV',color='green')    #label是图例,color是线条颜色
plt.legend(loc=1)  #显示图例,loc设置图例展示位置,默认为0(最优位置)、1右上角、2左上角
for a,b in zip(x,y):  #添加数据标签
    plt.text(a,b,'%d'%b,ha='center',va='bottom')  #在x,y的位置上添加订单数据 
plt.show()   #显示图

显示:
python plt pandas practice order bar text

工作中很常见柱形图与折线图的组合图形,但是两个指标的数量级往往不一致,如果只用一个纵坐标,可能数量级小的那个会看不到图,所以要用到主次坐标轴,如下:

#组合图形&主次坐标轴
data1 = orders.groupby('付款时间')[['支付金额','订单编号']].agg({'支付金额':'sum','订单编号':'count'})  #处理数据
x = data1.index   #x轴
y1 = data1['支付金额']  #y主轴数据
y2 = data1['订单编号']  #y次轴数据

plt.title('订单&GMV走势')  #图表标题
 
plt.bar(x,y1,label='GMV')  #GMV柱形图
plt.ylim(0,100000)   #设置y1的坐标轴范围
for a,b in zip(x,y1):  #添加数据标签
    plt.text(a,b+0.1,'%d'%b,ha='center',va='bottom')  #在x,y1+0.1的位置上添加GMV数据 , '%d'%y 即标签数据, ha和va控制标签位置
plt.legend(loc=1)  #显示图例,loc=1为右上角

plt.twinx()  #次纵坐标轴
plt.plot(x,y2,label='订单数',color='red')  #订单折线图,红色
plt.ylim(-2100,2200) #设置y2的坐标轴范围
for a,b in zip(x,y2):  #添加数据标签
    plt.text(a,b+0.2,'%d'%b,ha='center',va='bottom')  #在x,y2+0.1的位置上添加订单数据 
plt.legend(loc=2)  #显示图例,loc=2为左上角

显示:
python plt pandas practice order bar line

需要注意:
纵坐标轴范围、图例、数据标签,需要在各自的纵坐标里设置,即先进行主纵坐标的设置,之后是次纵坐标。如果都放在后面去设置,那么text(x,y)的y位置,就都是次纵坐标了。

制作简单的数据仪表盘如下:

#制作数据仪表盘
plt.figure(figsize=(15,8))   #设置图的整体大小 

#总共4个子图,用subplot()

#第一个:每日订单与成交额走势,柱形图与折线图组合
data1 = orders.groupby('付款时间')[['支付金额','订单编号']].agg({'支付金额':'sum','订单编号':'count'})  #处理数据
x = data1.index   #x轴
y1 = data1['支付金额']  #y主轴数据
y2 = data1['订单编号']  #y次轴数据

plt.subplot(2,2,1)   #2×2个子图:第一个
plt.title('订单&GMV走势')  #图表标题
 
plt.bar(x,y1,label='GMV')  #GMV柱形图
plt.ylim(0,100000)   #设置y1的坐标轴范围
for a,b in zip(x,y1):  #添加数据标签
    plt.text(a,b+0.1,'%d'%b,ha='center',va='bottom')  #在x,y1+0.1的位置上添加GMV数据 , '%d'%y 即标签数据, ha和va控制标签位置
plt.legend(loc=1)  #显示图例,loc=1为右上角

plt.twinx()  #次纵坐标轴
plt.plot(x,y2,label='订单数',color='red')  #订单折线图,红色
plt.ylim(-2100,2200) #设置y2的坐标轴范围
for a,b in zip(x,y2):  #添加数据标签
    plt.text(a,b+0.2,'%d'%b,ha='center',va='bottom')  #在x,y2+0.1的位置上添加订单数据 
plt.legend(loc=2)  #显示图例,loc=2为左上角


#第二个:主要商家,每日GMV趋势。 多条折线图
#数据处理
data2 = pd.DataFrame(orders[orders['商家名称'].isin(['店铺3','店铺5','店铺6','店铺9'])].groupby(['商家名称','付款时间'])['支付金额'].sum())  
#店铺3、5、6、9的成交额
data2_tmp = pd.DataFrame(index=set(data2.index.get_level_values(0)),columns=set(data2.index.get_level_values(1)))

for ind in data2_tmp.index:
    for col in data2_tmp.columns:
        data2_tmp.loc[ind,col] = data2.loc[ind,:].loc[col,'支付金额']

plt.subplot(2,2,2)   #2×2个子图:第二个
plt.title('主要商家GMV趋势')
colors = ['green','red','skyblue','blue']  #设置曲线颜色
x = sorted(data2_tmp.columns)  #日期是横轴

for i in range(len(data2_tmp.index)):
    plt.plot(x,data2_tmp.loc[data2_tmp.index[i],:],label=data2_tmp.index[i],color=colors[i])
plt.legend()  #显示图例,loc默认为0,即最优位置


#第三个:订单来源端口,每日趋势。  堆积柱形图
#数据处理
data3_tmp = pd.DataFrame(orders.groupby(['平台来源','付款时间'])['支付金额'].sum())
data3 = pd.DataFrame(index=set(data3_tmp.index.get_level_values(0)),columns=set(data3_tmp.index.get_level_values(1)))
for ind in data3.index:
    print(ind)
    for col in data3.columns:
        data3.loc[ind,col] = data3_tmp.loc[ind,:].loc[col,'支付金额']

barx = data3.columns
bary1 = data3.loc['android',:]
bary2 = data3.loc['iphone',:]

plt.subplot(2,2,3)   #2×2个子图:第三个
plt.title('订单来源端口分布')   #底部是安卓,顶部是iPhone。先画iPhone=安卓+iPhone,再画安卓
plt.bar(barx,bary1+bary2,label='iphone',color='green')
plt.bar(barx,bary1,label='android',color='red') #底部是bar_y数据
plt.legend()  
for a,b,c in zip(barx,bary1,bary2):  #添加数据标签,注意:底部是安卓,即y1
    plt.text(a,1000,'%d'%b,ha='center',va='bottom')  #在a,1000的位置上,添加数据标签
    plt.text(a,b+c-1000,'%d'%c,ha='center',va='bottom')  #调整标签的位置


#第四个:类目占比。 饼图

#最近一天的类目金额
data4 = orders[orders['付款时间']==max(orders['付款时间'])].groupby('类目')['支付金额'].sum().sort_values()   

plt.subplot(2,2,4)   #2×2个子图:第四个
plt.title('最近一天的类目占比')
plt.axis('equal')   #正圆,饼图会默认是椭圆
plt.pie(data4.values,labels=data4.index,autopct='%1.1f%%',\
        colors=['green','red','skyblue','blue'])  #显示百分数,1位小数
plt.show()

显示:
python plt pandas practice order four

过程稍复杂,需慢慢理解。

四、Titanic灾难数据分析显示

主要过程如下:

  • 导入必要的库
  • 导入数据
  • 设置为索引
  • 绘制展示男女乘客比例的扇形图
  • 绘制展示船票Fare与乘客年龄和性别的散点图
  • 生还人数
  • 绘制展示船票价格的直方图

数据titanicdata.csv如下:
python plt pandas practice titanic data

导库和读取数据如下:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

%matplotlib inline

titanic = pd.read_csv("titanicdata.csv")

titanic.head()

显示:
python plt pandas practice titanic read

设置索引如下:

titanic.set_index('PassengerId').head()

显示:
python plt pandas practice titanic index

创建一个饼图,展示男性/女性的比例:

# sum the instances of males and females
males = (titanic['Sex'] == 'male').sum()
females = (titanic['Sex'] == 'female').sum()

# put them into a list called proportions
proportions = [males, females]

# Create a pie chart
plt.pie(
    # using proportions
    proportions,
    
    # with the labels being officer names
    labels = ['Males', 'Females'],
    
    # with no shadows
    shadow = False,
    
    # with colors
    colors = ['blue','red'],
    
    # with one slide exploded out
    explode = (0.15 , 0),
    
    # with the start angle at 90%
    startangle = 90,
    
    # with the percent listed as a fraction
    autopct = '%1.1f%%'
    )

# View the plot drop above
plt.axis('equal')

# Set labels
plt.title("Sex Proportion")

# View the plot
plt.tight_layout()
plt.show()

显示:
python plt pandas practice titanic pie

用所付费用和年龄创建散点图,按性别区分图的颜色:

# 创建绘图
lm = sns.lmplot(x = 'Age', y = 'Fare', data = titanic, hue = 'Sex', fit_reg=False)

# set title
lm.set(title = 'Fare x Age')

# 获取axes对象并对其进行调整
axes = lm.axes
axes[0,0].set_ylim(-5,)
axes[0,0].set_xlim(-5,85)

显示:
python plt pandas practice titanic scatter

查看幸存人数:

titanic.Survived.sum()

打印:

342

创建一个柱状图,显示已付车费:

# 将值从顶部到最小值排序,并对前5项进行切片
df = titanic.Fare.sort_values(ascending = False)

# 使用numpy创建存储箱间隔
binsVal = np.arange(0,600,10)
binsVal

# 创建绘图
plt.hist(df, bins = binsVal)

# 设置标题和标签
plt.xlabel('Fare')
plt.ylabel('Frequency')
plt.title('Fare Payed Histrogram')

# 展示绘图
plt.show()

显示:
python plt pandas practice titanic bar

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/160572.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

6.2 List和Set接口

1. List接口 List接口继承自Collection接口&#xff0c;List接口实例中允许存储重复的元素&#xff0c;所有的元素以线性方式进行存储。在程序中可以通过索引访问List接口实例中存储的元素。另外&#xff0c;List接口实例中存储的元素是有序的&#xff0c;即元素的存入顺序和取…

【Linux网络编程】高级I/O

目录 五种I/O模型 阻塞和非阻塞 非阻塞I/O I/O多路复用之Select、Poll、与Epoll 本文目的是深入浅出理解高级I/O相关的知识&#xff0c;结尾附上代码加深理解相关知识。 五种I/O模型 1.阻塞I/O&#xff1a;在内核将数据准备好之前&#xff0c;系统调用会一直等待。所有的套…

【踩坑笔记】国科GK7202V300芯片开发常见问题解决办法

国科Linux芯片开发常见问题&解决办法 0.读前须知 不管什么时候&#xff0c;下载程序还是啥&#xff0c;一定要检查路径&#xff01;&#xff01;&#xff01;别问我为什么&#xff0c;呜呜呜~ tips&#xff1a;该芯片是仿造海思的产品&#xff0c;所以&#xff0c;有些不…

cp: can‘t stat ‘/usr/share/zoneinfo/Asia/Shanghai‘: No such file or directory

目录 问题描述问题分析解决方案容器时区验证 问题描述 使用下面的 Dockerfile 为 youlai-boot 项目制作镜像设置容器时区报错。 # 基础镜像 FROM openjdk:17-jdk-alpine # 时区修改 RUN /bin/cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime \&& echo Asia/Sha…

【每周一测】Java阶段三阶段考试

目录 1、SpringBoot在整合RabbitMQ时需要导入的包是 2、下列关于RabbitMQ的confirm消息确认机制解释说明正确的是 3、关于SpringBoot的配置文件&#xff0c;以下说法正确的是&#xff08;&#xff09; 4、变量命名规范说法正确的是? 5、哪个关键字可以对对象加互斥锁&…

计算机视觉的应用18-一键抠图人像与更换背景的项目应用,可扩展批量抠图与背景替换

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下计算机视觉的应用18-一键抠图人像与更换背景的项目应用&#xff0c;可扩展批量抠图与背景替换。该项目能够让你轻松地处理和编辑图片。这个项目的核心功能是一键抠图和更换背景。这个项目能够自动识别图片中的主体&…

医院绩效考核系统源码 医院绩效考核系统方案

医院绩效考核系统源码 医院绩效考核系统是现代医院管理的重要方法和科学的管理工具。良好的绩效管理&#xff0c;有助于带动全院职工的工作积极性&#xff0c;有助于提高工作效率、提高医疗质量、改善服务水平、降低运营成本&#xff0c;全面提升医院的精细化管理水平。 医院绩…

Flask学习一:概述

搭建项目 安装框架 pip install Flask第一个程序 from flask import Flaskapp Flask(__name__)app.route(/) def hello_world():return "Hello World"if __name__ __main__:app.run()怎么说呢&#xff0c;感觉还不错的样子。 调试模式 if __name__ __main__:a…

后端老项目迁移方法

老项目迁移方法 需求&#xff1a; 因某个模块MySQL表结构、表关系 错乱复杂&#xff0c;而且其他模块的代码也在操作这个模块的数据库 耦合严重 导致Web工程代码紊乱、不易理解、性能低下&#xff0c; 故在 系统由A JavaWeb工程迁移至B工程 时&#xff0c;重构MySQL表结构、表…

VS中修改解决方案名称和项目名称

如何修改visual studio2019中的项目名 - 知乎 (zhihu.com) 查了很多&#xff0c;还是这个可行。虽然文中说不是最简单的&#xff0c;但在所查找资料中是可行且最简单的。 要点主要是&#xff1a; 1、比如我们复制一个解决方案&#xff0c;最好是带代码哈&#xff0c;也就是添…

ToolJet:开源低代码框架,轻松构建复杂可响应界面 | 开源日报 No.78

ToolJet/ToolJet Stars: 25.0k License: AGPL-3.0 ToolJet 是一个开源的低代码框架&#xff0c;可以通过最小化工程投入来构建和部署内部工具。ToolJet 的拖放式前端构建器允许您在几分钟内创建复杂、响应式的前端界面。此外&#xff0c;您还可以集成各种数据源&#xff0c;包…

java使用 TCP 的 Socket API 实现客户端服务器通信

一&#xff1a;什么是 Socket(套接字) Socket 套接字是由系统提供于网络通信的技术, 是基于 TCP/IP 协议的网络通信的基本操作&#xff0c;要进行网络通信, 需要有一个 socket 对象, 一个 socket 对象对应着一个 socket 文件, 这个文件在 网卡上而不是硬盘上, 所以有了 sokcet…

互联网医院牌照|智慧医疗离不开牌照办理

互联网医院牌照是由卫生健康行政部门颁布的&#xff0c;所有材料审核通过后&#xff0c;相关部门授予《医疗机构执业许可证》&#xff0c;取得牌照后才有开展互联网诊疗活动的资质&#xff0c;但开展线上问诊也需要向发证机关提出申请&#xff0c;下面小编就给大家讲解下互联网…

LLM大模型量化原理

大型语言模型&#xff08;LLM&#xff09;可以用于文本生成、翻译、问答任务等。但是&#xff0c;LLM 也非常大&#xff08;显然&#xff0c;大型语言模型&#xff09;并且需要大量内存。 这对于手机和平板电脑等小型设备来说可能具有挑战性。 可以将参数乘以所选的精度大小以…

深入理解Linux网络笔记(六):深度理解TCP连接建立过程

本文为《深入理解Linux网络》学习笔记&#xff0c;使用的Linux源码版本是3.10&#xff0c;网卡驱动默认采用的都是Intel的igb网卡驱动 Linux源码在线阅读&#xff1a;https://elixir.bootlin.com/linux/v3.10/source 5、深度理解TCP连接建立过程 1&#xff09;、深入理解liste…

JVM:字节码文件,类的生命周期,类加载器

JVM&#xff1a;字节码文件&#xff0c;类的生命周期&#xff0c;类加载器 为什么要学这门课程 1. 初识JVM1.1. 什么是JVM1.2. JVM的功能1.3. 常见的JVM 2. 字节码文件详解2.1. Java虚拟机的组成2.2. 字节码文件的组成2.2.1. 以正确的姿势打开文…

进阶理解:leetcode115.不同的子序列(细节深度)

这道题是困难题&#xff0c;本章是针对于动态规划解决&#xff0c;对于思路进行一个全面透彻的讲解&#xff0c;但是并不是对于基础讲解思路&#xff0c;而是渗透到递推式和dp填数的详解&#xff0c;如果有读者不清楚基本的解题思路&#xff0c;请看我的这篇文章算法训练营DAY5…

基于Vue+SpringBoot的厦门旅游电子商务预订系统 开源项目

项目编号&#xff1a; S 030 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S030&#xff0c;文末获取源码。} 项目编号&#xff1a;S030&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 景点类型模块2.2 景点档案模块2.3 酒…

MatLab的下载、安装与使用(亲测有效)

1、概述 MatLab是由MathWorks公司开发并发布的&#xff0c;支持线性代数、矩阵运算、绘制函数和数据、信号处理、图像处理以及视频处理等功能。广泛用于算法开发、数据可视化、数据分析以及数值计算等。 Matlab 的主要特性包括&#xff1a; 简单易用的语法&#xff0c;使得程…

在Rust编程中使用泛型

1.摘要 Rust中的泛型可以让我们为像函数签名或结构体这样的项创建定义, 这样它们就可以用于多种不同的具体数据类型。下面的内容将涉及泛型定义函数、结构体、枚举和方法, 还将讨论泛型如何影响代码性能。 2.在函数定义中使用泛型 当使用泛型定义函数时&#xff0c;本来在函…