计算机视觉:驾驶员疲劳检测

目录

前言

关键点讲解

代码详解

结果展示

改进方向(打哈欠检测疲劳方法)

改进方向(点头检测疲劳)

GUI界面设计展示


前言

上次博客我们讲到了如何定位人脸,并且在人脸上进行关键点定位。其中包括5点定位和68点定位等,在定位之后呢,我们就可以使用定位信息来做一些相关操作,例如闭眼检测,这里就可以应用到驾驶员的疲劳检测上,或者是经常使用电脑的人,不闭眼可能会导致眼睛干涩等。

关键点讲解

我们本次博客主要讲解通过闭眼来检测疲劳驾驶,那么我们首先就要了解怎么让计算机来判断人是否闭了眼睛。我们通过上次的博客可以知道,我们首先要让计算机识别出来人脸,然后在识别出来的人脸上继续做关键点查找。我们这里用的是68关键点检测。

对于眼睛来讲,他每一个眼睛都有6个关键点。这里我们可以通过一种方式来判断是否进行了眨眼。

在眼睛的6个关键点中,我们可以发现当睁眼的时候,2和6点以及3和5点的欧氏距离较大。1和4点稍稍距离会增加一点,那么我们可以设定一个公式。

                                          EAR=\frac{||P2-P6||+||P3-P5||}{2||P1-P4||}

对应在图上就是2点和6点相减,3和5点相减。然后比上2倍的1和4点的差。其中都是绝对值。这样睁眼的时候EAR的数值就会较大,闭眼的时候EAR的数值就会较小。然后我们自己设定一个阈值,如果EAR的数值低于这个阈值超过了视频帧中的几帧。那么我们就认为该驾驶员正在闭眼。

经过了论文验证,说明该方法的准确度是非常可观的,且具有较强的鲁棒性。

代码详解

首先我们导入工具包,这里面也包括了计算欧氏距离的工具包。

from scipy.spatial import distance as dist
from collections import OrderedDict
import numpy as np
import argparse
import time
import dlib
import cv2

然后我们把68点关键点定位信息定位好。

FACIAL_LANDMARKS_68_IDXS = OrderedDict([
	("mouth", (48, 68)),
	("right_eyebrow", (17, 22)),
	("left_eyebrow", (22, 27)),
	("right_eye", (36, 42)),
	("left_eye", (42, 48)),
	("nose", (27, 36)),
	("jaw", (0, 17))
])

这里"jaw", (0, 17)表示的是下巴的位置的关键点标识分别是0-17点。
然后我们将需要的模型和视频导入到程序当中。关键点检测模型。

ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,
	help="path to facial landmark predictor")
ap.add_argument("-v", "--video", type=str, default="",
	help="path to input video file")
args = vars(ap.parse_args())
EYE_AR_THRESH = 0.3
EYE_AR_CONSEC_FRAMES = 3

这里这两个参数很重要,其中EYE_AR_THRESH这个表示EAR的阈值。如果高于这个阈值说明人这个时候是睁眼的,如果低于这个阈值的话,那么这个时候就要注意了,驾驶员可能在闭眼。而EYE_AR_CONSEC_FRAMES这个表示如果EAR数值超过了三帧及以上我们就可以把他认定为一次闭眼。为什么是三帧呢?因为如果一帧两帧的话可能是其他因素影响的。

COUNTER = 0
TOTAL = 0

然后我们又设定了两个计数器,如果小于阈值那么COUNTER的数值就加一,知道COUNTER的数值大于等于3的时候,这个TOTAL就加一,就说明记录的闭眼了一次。

print("[INFO] loading facial landmark predictor...")
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])

这里我们就很熟悉了,一个是人脸定位器,一个是关键点检测器。这里分别调出来。

(lStart, lEnd) = FACIAL_LANDMARKS_68_IDXS["left_eye"]
(rStart, rEnd) = FACIAL_LANDMARKS_68_IDXS["right_eye"]

然后我们通过关键点只取两个ROI区域,就是左眼区域和右眼区域。

print("[INFO] starting video stream thread...")
vs = cv2.VideoCapture(args["video"])

随后我们将视频读进来。

while True:
	# 预处理
	frame = vs.read()[1]
	if frame is None:
		break
	(h, w) = frame.shape[:2]
	width=1200
	r = width / float(w)
	dim = (width, int(h * r))
	frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)
	gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

将视频的展示框放大一点,这里很关键就是如果视频的框框设置的太小的话,可能无法检测到人脸。然后我们就把宽设置成了1200,然后对长度也同比例就行resize操作。最后转换成灰度图。

rects = detector(gray, 0)

这里面检测到人脸,将人脸框的四个坐标拿到手。注意就是必须要是对灰度图进行处理。

	for rect in rects:
		# 获取坐标
		shape = predictor(gray, rect)
		shape = shape_to_np(shape)

在这里进行人脸框遍历,然后检测68关键点。

def shape_to_np(shape, dtype="int"):
	# 创建68*2
	coords = np.zeros((shape.num_parts, 2), dtype=dtype)
	# 遍历每一个关键点
	# 得到坐标
	for i in range(0, shape.num_parts):
		coords[i] = (shape.part(i).x, shape.part(i).y)
	return coords

这里就是提取关键点的坐标。

		leftEye = shape[lStart:lEnd]
		rightEye = shape[rStart:rEnd]
		leftEAR = eye_aspect_ratio(leftEye)
		rightEAR = eye_aspect_ratio(rightEye)

然后我们把左眼和右眼分别求了一下EAR数值。这里的eye_aspect_ratio函数就是计算EAR数值的。

def eye_aspect_ratio(eye):
	# 计算距离,竖直的
	A = dist.euclidean(eye[1], eye[5])
	B = dist.euclidean(eye[2], eye[4])
	# 计算距离,水平的
	C = dist.euclidean(eye[0], eye[3])
	# ear值
	ear = (A + B) / (2.0 * C)
	return ear

其中dist.euclidean表示计算欧式距离,和公式中计算EAR数值一摸一样。

		ear = (leftEAR + rightEAR) / 2.0

		# 绘制眼睛区域
		leftEyeHull = cv2.convexHull(leftEye)
		rightEyeHull = cv2.convexHull(rightEye)
		cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
		cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)

然后对于左眼和右眼都进行了EAR求解然后求了一个平均值,然后根据凸包的概念,对眼睛区域进行了绘图。将左眼区域和右眼区域绘图出来。

		if ear < EYE_AR_THRESH:
			COUNTER += 1

		else:
			# 如果连续几帧都是闭眼的,总数算一次
			if COUNTER >= EYE_AR_CONSEC_FRAMES:
				TOTAL += 1

			# 重置
			COUNTER = 0

		# 显示
		cv2.putText(frame, "Blinks: {}".format(TOTAL), (10, 30),
			cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
		cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),
			cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

	cv2.imshow("Frame", frame)
	key = cv2.waitKey(10) & 0xFF
 
	if key == 27:
		break

vs.release()
cv2.destroyAllWindows()

最后进行了一次阈值判断,如果EAR连续三帧都小于0.3,那么我们就把TOTAL加一,这样记录一次闭眼的过程。然后最后将EAR数值和TOTAL的数值展示在视频当中。最后完成整体的训练。

结果展示

改进方向(打哈欠检测疲劳方法)

我们知道在疲劳检测当中,光光检测眨眼可能不是特别准确,因此我们还要在其他可以展示驾驶员疲劳的点来结合展示驾驶员是否处于疲劳驾驶阶段。我们了解到还可以通过嘴巴打哈欠,和点头来展示驾驶员是否疲劳。我们首先来考虑嘴巴打哈欠。
首先我们来看一下嘴巴的关键点。

我们使用对眨眼检测的方法继续对嘴巴使用同样的方法检测是否张嘴!对应公式是:

                                                MAR=\frac{||P2-P6||+||P3-P5||}{2||P1-P4||}

def mouth_aspect_ratio(mouth):
	A = np.linalg.norm(mouth[2] - mouth[9])  # 51, 59
	B = np.linalg.norm(mouth[4] - mouth[7])  # 53, 57
	C = np.linalg.norm(mouth[0] - mouth[6])  # 49, 55
	mar = (A + B) / (2.0 * C)
	return mar

这里面我们选择的是嘴部区域内的六个点,来判断驾驶员是否进行了张嘴!

MAR_THRESH = 0.5
MOUTH_AR_CONSEC_FRAMES = 3

同样我们也要设置一个阈值,解释同对眨眼检测的时候一样。

(mStart, mEnd) = FACIAL_LANDMARKS_68_IDXS["mouth"]

首先我们取到68关键点中对应的嘴部区域。

mouth = shape[mStart:mEnd]
mar = mouth_aspect_ratio(mouth)

然后通过函数mouth_aspect_ratio来计算出来mar数值!然后进行凸包检测,并且要画出来。

		mouthHull = cv2.convexHull(mouth)
		cv2.drawContours(frame, [mouthHull], -1, (0, 255, 0), 1)
		left = rect.left()#绘制出来人脸框
		top = rect.top()
		right = rect.right()
		bottom = rect.bottom()
		cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 3)

这里面我们要加上一点就是说我们要绘制出来人脸框框!

		if mar > MAR_THRESH:  # 张嘴阈值0.5
			mCOUNTER += 1
			cv2.putText(frame, "Yawning!", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
		else:
			# 如果连续3次都小于阈值,则表示打了一次哈欠
			if mCOUNTER >= MOUTH_AR_CONSEC_FRAMES:  # 阈值:3
				mTOTAL += 1
			# 重置嘴帧计数器
			mCOUNTER = 0
		cv2.putText(frame, "Yawning: {}".format(mTOTAL), (150, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
		cv2.putText(frame, "mCOUNTER: {}".format(mCOUNTER), (300, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
		cv2.putText(frame, "MAR: {:.2f}".format(mar), (480, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

然后进行判断,并且在视频当中展示出来!

改进方向(点头检测疲劳)

检测流程:
2D人脸关键点检测;3D人脸模型匹配;求解3D点和对应2D点的转换关系;根据旋转矩阵求解欧拉角。
一个物体相对于相机的姿态可以使用旋转矩阵和平移矩阵来表示。
!](https://img-blog.csdnimg.cn/a8286dc98d624f4183eed96daab991e2.png)

1. 欧拉角

简单来说,欧拉角就是物体绕坐标系三个坐标轴(x,y,z轴)的旋转角度。

2. 世界坐标系和其他坐标系的转换

坐标系转换:

                                \begin{pmatrix} X\\ Y\\ Z\\ \end{pmatrix}=R\begin{pmatrix} U\\ V\\ W \end{pmatrix}+T=[R|T]=\begin{pmatrix} U\\ V\\ W\\ 1 \end{pmatrix}

相机坐标系到像素坐标系转换:

                                   S\begin{pmatrix} X\\ Y\\ 1 \end{pmatrix}=\begin{pmatrix} Fx& 0& Cx\\ 0& Fy& Cy\\ 0& 0& 1\end{pmatrix}\begin{pmatrix} X\\ Y\\ Z \end{pmatrix}

因此像素坐标系和世界坐标系的关系如下:

                                 S\begin{pmatrix} X\\ Y\\ 1 \end{pmatrix}=\begin{pmatrix} Fx & 0& Cx\\ 0& Fy& Cy\\ 0& 1& 1\end{pmatrix}[R|T]\begin{pmatrix} U\\ V\\ W\\ 1 \end{pmatrix}

然后我们根据论文来定义一下:

object_pts = np.float32([[6.825897, 6.760612, 4.402142],  #33左眉左上角
                         [1.330353, 7.122144, 6.903745],  #29左眉右角
                         [-1.330353, 7.122144, 6.903745], #34右眉左角
                         [-6.825897, 6.760612, 4.402142], #38右眉右上角
                         [5.311432, 5.485328, 3.987654],  #13左眼左上角
                         [1.789930, 5.393625, 4.413414],  #17左眼右上角
                         [-1.789930, 5.393625, 4.413414], #25右眼左上角
                         [-5.311432, 5.485328, 3.987654], #21右眼右上角
                         [2.005628, 1.409845, 6.165652],  #55鼻子左上角
                         [-2.005628, 1.409845, 6.165652], #49鼻子右上角
                         [2.774015, -2.080775, 5.048531], #43嘴左上角
                         [-2.774015, -2.080775, 5.048531],#39嘴右上角
                         [0.000000, -3.116408, 6.097667], #45嘴中央下角
                         [0.000000, -7.415691, 4.070434]])#6下巴角

K = [6.5308391993466671e+002, 0.0, 3.1950000000000000e+002,
     0.0, 6.5308391993466671e+002, 2.3950000000000000e+002,
     0.0, 0.0, 1.0]# 等价于矩阵[fx, 0, cx; 0, fy, cy; 0, 0, 1]
# 图像中心坐标系(uv):相机畸变参数[k1, k2, p1, p2, k3]
D = [7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000]
reprojectsrc = np.float32([[10.0, 10.0, 10.0],
                           [10.0, 10.0, -10.0],
                           [10.0, -10.0, -10.0],
                           [10.0, -10.0, 10.0],
                           [-10.0, 10.0, 10.0],
                           [-10.0, 10.0, -10.0],
                           [-10.0, -10.0, -10.0],
                           [-10.0, -10.0, 10.0]])
# 绘制正方体12轴
line_pairs = [[0, 1], [1, 2], [2, 3], [3, 0],
              [4, 5], [5, 6], [6, 7], [7, 4],
              [0, 4], [1, 5], [2, 6], [3, 7]]

其中reprojectsrcline_pairs这两个属于矩形和矩形连接框框的操作。后续会用得到。

cam_matrix = np.array(K).reshape(3, 3).astype(np.float32)
dist_coeffs = np.array(D).reshape(5, 1).astype(np.float32)

这里我们对K和D矩阵进行了reshape了一下!

def get_head_pose(shape):  # 头部姿态估计
	# (像素坐标集合)填写2D参考点,注释遵循https://ibug.doc.ic.ac.uk/resources/300-W/
	# 17左眉左上角/21左眉右角/22右眉左上角/26右眉右上角/36左眼左上角/39左眼右上角/42右眼左上角/
	# 45右眼右上角/31鼻子左上角/35鼻子右上角/48左上角/54嘴右上角/57嘴中央下角/8下巴角
	image_pts = np.float32([shape[17], shape[21], shape[22], shape[26], shape[36],
							shape[39], shape[42], shape[45], shape[31], shape[35],
							shape[48], shape[54], shape[57], shape[8]])
	# solvePnP计算姿势——求解旋转和平移矩阵:
	# rotation_vec表示旋转矩阵,translation_vec表示平移矩阵,cam_matrix与K矩阵对应,dist_coeffs与D矩阵对应。
	_, rotation_vec, translation_vec = cv2.solvePnP(object_pts, image_pts, cam_matrix, dist_coeffs)
	# projectPoints重新投影误差:原2d点和重投影2d点的距离(输入3d点、相机内参、相机畸变、r、t,输出重投影2d点)
	reprojectdst, _ = cv2.projectPoints(reprojectsrc, rotation_vec, translation_vec, cam_matrix, dist_coeffs)
	reprojectdst = tuple(map(tuple, reprojectdst.reshape(8, 2)))  # 以8行2列显示

	# 计算欧拉角calc euler angle
	# 参考https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#decomposeprojectionmatrix
	rotation_mat, _ = cv2.Rodrigues(rotation_vec)  # 罗德里格斯公式(将旋转矩阵转换为旋转向量)
	pose_mat = cv2.hconcat((rotation_mat, translation_vec))  # 水平拼接,vconcat垂直拼接
	# decomposeProjectionMatrix将投影矩阵分解为旋转矩阵和相机矩阵
	_, _, _, _, _, _, euler_angle = cv2.decomposeProjectionMatrix(pose_mat)

	pitch, yaw, roll = [math.radians(_) for _ in euler_angle]

	pitch = math.degrees(math.asin(math.sin(pitch)))
	roll = -math.degrees(math.asin(math.sin(roll)))
	yaw = math.degrees(math.asin(math.sin(yaw)))
	print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))

	return reprojectdst, euler_angle  # 投影误差,欧拉角

这里我们对一些关键点进行了定位,并且我们将世界坐标系转化成了2D上的坐标。最后我们通过CV2计算出来了欧拉角,这样我们就可以判断司机是否点头了!

HAR_THRESH = 0.3
NOD_AR_CONSEC_FRAMES = 3
hCOUNTER = 0
hTOTAL = 0

同样这里我们也要设定一个阈值和计数器!

		reprojectdst, euler_angle = get_head_pose(shape)
		har = euler_angle[0, 0]  # 取pitch旋转角度
		if har > HAR_THRESH:  # 点头阈值0.3
			hCOUNTER += 1
		else:
			# 如果连续3次都小于阈值,则表示瞌睡点头一次
			if hCOUNTER >= NOD_AR_CONSEC_FRAMES:  # 阈值:3
				hTOTAL += 1
			# 重置点头帧计数器
			hCOUNTER = 0

		# 绘制正方体12轴
		for start, end in line_pairs:
			cv2.line(frame, (int(reprojectdst[start][0]),int(reprojectdst[start][1])), (int(reprojectdst[end][0]),int(reprojectdst[end][1])), (0, 0, 255))
		# 显示角度结果
		cv2.putText(frame, "X: " + "{:7.2f}".format(euler_angle[0, 0]), (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.75,
					(0, 255, 0), thickness=2)  # GREEN
		cv2.putText(frame, "Y: " + "{:7.2f}".format(euler_angle[1, 0]), (150, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.75,
					(255, 0, 0), thickness=2)  # BLUE
		cv2.putText(frame, "Z: " + "{:7.2f}".format(euler_angle[2, 0]), (300, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.75,
					(0, 0, 255), thickness=2)  # RED
		cv2.putText(frame, "Nod: {}".format(hTOTAL), (450, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2)

		for (x, y) in shape:
			cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)

	if TOTAL >= 50 or mTOTAL >= 15:
		cv2.putText(frame, "SLEEP!!!", (100, 200), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 3)

这里也是一些判断操作和将信息在视频中展示出来。
最后的效果如下:

GUI界面设计展示

如果觉得博主的文章还不错或者您用得到的话,可以免费的关注一下博主,如果三连收藏支持就更好啦!这就是给予我最大的支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/160390.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

骨传导能保护听力吗?骨传导耳机是智商税吗?

先说答案&#xff0c;骨传导耳机是可以保护听力的&#xff01;并且骨传导耳机也不是智商税&#xff01;甚至在某些场景下&#xff0c;骨传导耳机比其他耳机更适合。 为什么说骨传导耳机会保护听力呢&#xff1f;因为骨传导耳机跟入耳式耳机的传递声音方式是不一样的&#xff0c…

PACS医学影像信息化数字平台源码

PACS系统对医院影像科意义重大&#xff0c;将业务量巨大的影像检验流程依托于信息化技术&#xff0c;对于进行信息化建设的医院而言&#xff0c;是十分必要的。 PACS系统源码&#xff0c;集成三维影像后处理功能&#xff0c;包括三维多平面重建、三维容积重建、三维表面重建、三…

【HarmonyOS开发】设备调试避坑指南

备注&#xff1a;通过开发验证&#xff0c;发现每个设备调试都会存在不小的差别&#xff0c;开发验证需要注意~ 1、预览器调试&#xff08;只能预览具有Entry修饰的文件&#xff09; 修改文件&#xff0c;预览器将自动刷新 注意&#xff1a;当我们只修改了Component 组件的文件…

基于单片机温湿度PM2.5报警系统

**单片机设计介绍&#xff0c; 基于单片机温湿度PM2.5报警设置系统 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 单片机温湿度PM2.5报警设置系统是一种智能化的环境检测与报警系统。它主要由单片机、传感器、液晶显示屏、蜂鸣器…

嵌入式QTGit面试题

自己在秋招过程中遇到的QT和嵌入式和Git相关的面试题&#xff0c;因为比较少就一起放了 QT connect第5个参数是什么&#xff1f; Qt::AutoConnection&#xff1a; 默认值&#xff0c;使用这个值则连接类型会在信号发送时决定。 如果接收者和发送者在同一个线程&#xff0c;则…

轻地图+数据闭环加速落地,觉非科技获多家头部车企定点

‍作者 |张祥威 编辑 |德新 智能驾驶日益普及&#xff0c;「轻地图」和「数据闭环」成为各家能力比拼的关键&#xff0c;车企对此的需求也逐渐迫切。 11月16日&#xff0c;觉非科技宣布已与多家头部主机厂达成量产定点合作&#xff0c;围绕轻地图与数据闭环服务&#xff0c;支…

《Linux从练气到飞升》No.31 多线程编程实践与线程安全技术

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 &#x1f618;欢迎关注&#xff1a;&#x1f44d;点赞&#x1f64c;收藏✍️留言 &#x1f3c7;码字不易&#xff0c;你的&#x1f44d;点赞&#x1f64c;收藏❤️关注对我真的…

【数据结构】图的存储结构(邻接矩阵)

一.邻接矩阵 1.图的特点 任何两个顶点之间都可能存在边&#xff0c;无法通过存储位置表示这种任意的逻辑关系。 图无法采用顺序存储结构。 2.如何存储图&#xff1f; 将顶点与边分开存储。 3.邻接矩阵&#xff08;数组表示法&#xff09; 基本思想&#xff1a; 用一个一维数…

Vatee万腾的科技征程:Vatee数字化创新的前沿探讨

在Vatee万腾的科技征程中&#xff0c;我们目睹了一场数字化创新的引领之旅&#xff0c;探讨了Vatee在科技前沿的独到见解。Vatee万腾不仅仅是一家科技公司&#xff0c;更是一支前行不辍的冒险队伍&#xff0c;通过不断突破自我&#xff0c;探索未知领域&#xff0c;引领着数字化…

Ghidra逆向工具配置 MacOS 的启动台显示(Python)

写在前面 通过 ghidra 工具, 但是只能用命令行启动, 不太舒服, 写个脚本生成 MacOS 的 app 格式并导入启动台. 不算复杂, 主要是解析包的一些元信息还有裁剪软件图标(通过 MacOS 自带的 API) 脚本 #!/opt/homebrew/bin/python3import os import re import subprocess as sp…

SpringCloud 2022有哪些变化

目录 前提条件 AOT支持 Spring Native支持 前提条件 Spring Cloud 2022.0.0是构建在Spring Framework 6.0和Spring Boot 3.0 之上的一S个主要版本。 JDK要求最低需要是Java 17J2EE要求最低需要Jakarta EE 9 AOT支持 Spring cloud 2022支持AOT编译&#xff0c;它是将程序源…

【HarmonyOS开发】配置开发工具DevEco Studio

1、下载 注意&#xff1a; 1、安装过程中&#xff0c;一定要自定义安装位置&#xff0c;包比较大&#xff0c;包比较大&#xff0c;包比较大&#xff01;&#xff01;&#xff01; 2、可以将该工具添加到右键中&#xff0c;否则&#xff0c;如果你的项目不是HarmonyOS&#xff…

Maven依赖传递和依赖冲突以及继承和聚合关系详解

Java全能学习面试指南&#xff1a;https://javaxiaobear.cn 1、Maven依赖传递和依赖冲突 1. Maven依赖传递特性 概念 假如有Maven项目A&#xff0c;项目B依赖A&#xff0c;项目C依赖B。那么我们可以说 C依赖A。也就是说&#xff0c;依赖的关系为&#xff1a;C—>B—>…

探索亚马逊大语言模型:开启人工智能时代的语言创作新篇章

文章目录 前言一、大语言模型是什么&#xff1f;应用范围 二、Amazon Bedrock总结 前言 想必大家在ChatGPT的突然兴起&#xff0c;大家多多少少都会有各种各样的问题&#xff0c;比如&#xff1a;大语言模型和生成式AI有什么关系呢&#xff1f;大语言模型为什么这么火&#xf…

linux使用chage修改用户密码过期时间解决rac安装互信问题

文章目录 一、RAC建多实例库提示互信问题二、原因分析1.修改系统用户密码期限2.修改语法&#xff1a;chage [选项] 用户名3.常用示例&#xff1a; 一、RAC建多实例库提示互信问题 二、原因分析 因为此次是在原有集群情况下创建多个实例&#xff0c;其实不需要优先排查俩节点的…

Aerial for Mac: 沉浸在高清鸟瞰的世界,让你的屏幕焕发新生

你是否已经厌倦了那些平淡无奇的屏保程序&#xff1f;是否希望你的Mac屏幕能更生动、更有趣&#xff1f;如果你对此抱有强烈的期待&#xff0c;那么Aerial for Mac绝对会是你期待已久的解决方案。 Aerial for Mac是一款独具特色的高清屏保程序&#xff0c;它以鸟瞰的视角带你领…

4.5 Windows驱动开发:实现进程数据转储

多数ARK反内核工具中都存在驱动级别的内存转存功能&#xff0c;该功能可以将应用层中运行进程的内存镜像转存到特定目录下&#xff0c;内存转存功能在应对加壳程序的分析尤为重要&#xff0c;当进程在内存中解码后&#xff0c;我们可以很容易的将内存镜像导出&#xff0c;从而更…

FISCO BCOS 3.0【01】搭建第一个区块链网络

官方技术文档&#xff1a;https://fisco-bcos-doc.readthedocs.io/zh-cn/latest/index.html 我们在官方技术文档的基础上&#xff0c;进行&#xff0c;对文档中一些不清楚的地方进行修正 搭建Air版本FISCO BCOS联盟链 本节以搭建单群组FISCO BCOS链为例操作&#xff0c;使用开…

关于ASO优化的分步入门指南1

欢迎阅读我们的应用商店优化&#xff08;ASO&#xff09;分步指南&#xff0c;接下来我们将引导大家完成ASO研究的初始步骤&#xff0c;为提高应用程序的知名度和吸引自然下载奠定基础。 1、确定竞争对手。 首先确定应用程序的直接和间接竞争对手。我们可以通过咨询客户或进行…

基于LeNet实现手写体数字识别实验

目录 1 数据 1.1 数据预处理 2 模型构建 2.1 自定义算子实现 2.2 Pytorch框架实现 2.3 测试两个网络的运算速度 2.4 两个网络加载同样的权重&#xff0c;两个网络的输出结果是否一致&#xff1f; 2.5 计算模型的参数量和计算量。 3 模型训练 4 模型评价 5 模型预测 总结…