基于黄金正弦算法优化概率神经网络PNN的分类预测 - 附代码

基于黄金正弦算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于黄金正弦算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于黄金正弦优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用黄金正弦算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于黄金正弦优化的PNN网络

黄金正弦算法原理请参考:https://blog.csdn.net/u011835903/article/details/111699194

利用黄金正弦算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

黄金正弦参数设置如下:

%% 黄金正弦参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,黄金正弦-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/158733.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从0开始学习数据结构 C语言实现 1.前篇及二分查找算法

一、前篇 1、什么是数据结构? 数据结构是带有结构特性的数据元素的集合,它研究的是数据的逻辑结构和数据的物理结构以及它们之间的相互关系 2、时间复杂度与空间复杂度 大O符号是用于描述函数渐进行为的数学符号 常用函数的增长表 阶乘O(n!) > 指数…

基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码

基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于蝠鲼觅食优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

Spring Boot 中使用 ResourceLoader 加载资源的完整示例

ResourceLoader 是 Spring 框架中用于加载资源的接口。它定义了一系列用于获取资源的方法,可以处理各种资源,包括类路径资源、文件系统资源、URL 资源等。 以下是 ResourceLoader 接口的主要方法: Resource getResource(String location)&am…

VSCode 运行java程序中文乱码

现象描述 java文件中包含中文,运行java程序后,乱码报错。 解决方法 原本运行指令为 cd "d:\programProjects\Java_proj\" ; if ($?) { javac Solution.java } ; if ($?) { java Solution } 需要添加 编码格式 -encoding utf8 cd &quo…

python数据处理作业6:随机生产一个服从正态分布长度为1000的数组,将这个数组划分为25个区间,画出数组的直方图和密度图

每日小语 我只有忘掉自己,才能津津有味地进行沉思和遐想。——卢梭 gpt代码 import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm# 随机生成一个服从正态分布的长度为1000的数组 data np.random.randn(1000)# 划分为25个区间 num_…

【Linux】U盘安装的cfg引导文件配置

isolinux.cfg文件 default vesamenu.c32 timeout 600display boot.msg# Clear the screen when exiting the menu, instead of leaving the menu displayed. # For vesamenu, this means the graphical background is still displayed without # the menu itself for as long …

什么是好用的HR人才测评?

对于HR来说,选用一个合适的测评工具,我想不外乎以下几点: 1、成本可控 不是所有的HR都能申请到足够的资金,去做专业的人才测评,尤其是中小企业,这可是一笔不小 的开支。即使是基层普通岗位的成本&#xf…

redis运维(十一) python操作redis

一 python操作redis ① 安装pyredis redis常见错误 说明:由于redis服务器是5.0.8的,为了避免出现问题,默认最高版本的即可 --> 适配 ② 操作流程 核心:获取redis数据库连接对象 ③ Python 字符串前面加u,r,b的含义 原因: 字符串在…

视频一键转码:批量转换MP4视频的技巧

随着数字媒体设备的普及,视频文件在生活中扮演着越来越重要的角色。而在处理视频文件时,有时需要将其转换为不同的格式以适应不同的需求。其中,MP4格式因其通用性和高质量而备受青睐。本文详解云炫AI智剪如何一键转码的技巧,帮助批…

基础课6——开放领域对话系统架构

开放领域对话系统是指针对非特定领域或行业的对话系统,它可以与用户进行自由的对话,不受特定领域或行业的知识和规则的限制。开放领域对话系统需要具备更广泛的语言理解和生成能力,以便与用户进行自然、流畅的对话。 与垂直领域对话系统相比…

msvcp140.dll是什么东西以及如何解决其文件缺失问题

当我们在使用Windows电脑的过程中,有时候可能会遇到一些由于系统文件缺失或者损坏而导致的问题。其中,"msvcp140.dll缺失"就是一种常见的错误提示。msvcp140.dll究竟是什么?为什么它会缺失?又该如何解决这个问题呢&…

MIKE水动力笔记20_由dfs2网格文件提取dfs1断面序列文件

本文目录 前言Step 1 MIKE Zero工具箱Step 2 提取dfs1 前言 在MIKE中,dfs2是一个一个小格格的网格面的时间序列文件,dfs1是一条由多个点组成的线的时间序列文件。 如下两图: 本博文内容主要讲如何从dfs2网格文件中提取dfs1断面序列文件。 …

PaddleClas学习2——使用PPLCNet模型对车辆朝向进行识别(python)

使用PPLCNet模型对车辆朝向进行识别 1. 配置PaddlePaddle,PaddleClas环境2. 准备数据2.1 标注数据格式2.2 标注数据3. 模型训练3.1 修改配置文件3.2 训练、评估4 模型预测1. 配置PaddlePaddle,PaddleClas环境 安装:请先参考文档 环境准备 配置 PaddleClas 运行环境。 2. 准…

Unity Text文本首行缩进两个字符的方法

Text文本首行缩进两个字符的方法比较简单。通过代码把"\u3000\u3000"加到文本字符串前面即可。 参考如下代码: TMPtext1.text "\u3000\u3000" "这是一段有首行缩进的文本内容。\n这是第二行"; 运行效果如下图所示: 虽…

java入门,从CK导一部分数据到mysql

一、需求 需要从生产环境ck数据库导数据到mysql,数据量大约100w条记录。 二、处理步骤 1、这里的关键词是生产库,第二就是100w条记录。所以处理数据的时候就要遵守一定的规范。首先将原数据库表进行备份,或者将需要导出的数据建一张新的表了…

HarmonyOS 实现底部导航栏

该功能实现需要Tabs、TabsController、TabContent、Column等组件 Tabs相当于Android中的BottomNavigationView TabContent相当于Android中的fragment TabBuilder内相当于每个Item Entry Component struct Main {public tabsController : object new TabsController()State c…

让资产权利归于建设者:Kiosk使过程变得更简单

区块链凭借着其将人的权利地位置于平台之上的能力,可以重塑互联网,而自托管为个人提供了控制和管理其资产和数据的能力。链上交易支持建设者和客户之间的点对点交易。这些特质联合起来,可以将数字世界从基于价值提取的模式转变为基于价值创造…

IIC总线概述和通信时序代码详细图文解析

IIC总线 1 IIC总线概述 I2C总线两线制包括:串行数据SDA(Serial Data)、串行时钟SCL(Serial Clock)。总线必须由主机(通常为微控制器)控制,主机产生串行时钟(SCL&#x…

人工智能飞速发展的今天,IT行业能做些什么?

原创 | 文 BFT机器人 01 IT行业:信息流通的“媒介” IT行业作为一个信息化产业,通过运用信息手段和技术,为客户收集、整理、储存、传递信息情报,提供信息服务,并提供相应的信息手段、信息技术等服务。 近年来&#xf…

Pikachu漏洞练习平台之SSRF(服务器端请求伪造)

注意区分CSRF和SSRF: CSRF:跨站请求伪造攻击,由客户端发起; SSRF:是服务器端请求伪造,由服务器发起。 SSRF形成的原因大都是由于服务端提供了从其他服务器应用获取数据的功能,但又没有对目标…