生成式模型与辨别式模型

分类模型可以分为两大类:生成式模型与辨别式模型。本文解释了这两种模型类型之间的区别,并讨论了每种方法的优缺点。

辨别式模型

辨别式模型是一种能够学习输入数据和输出标签之间关系的模型,它通过学习输入数据的特征来预测输出标签。在分类问题中,我们的目标是将每个输入向量x分配给标签y。判别模型试图直接学习将输入向量映射到标签的函数f(x)。这些模型可以进一步分为两个子类型:

分类器试图找到f(x)而不使用任何概率分布。这些分类器直接为每个样本输出一个标签,而不提供类的概率估计。这些分类器通常称为确定性分类器或无分布分类器。此类分类器的例子包括k近邻、决策树和SVM。

分类器首先从训练数据中学习后验类概率P(y = k|x),并根据这些概率将一个新样本x分配给其中一个类(通常是后验概率最高的类)。

这些分类器通常被称为概率分类器。这种分类器的例子包括逻辑回归和在输出层中使用sigmoid或softmax函数的神经网络。

在所有条件相同的情况下,我一般都使用概率分类器而不是确定性分类器,因为这个分类器提供了关于将样本分配给特定类的置信度的额外信息。

一般的判别式模型包括:

  • 逻辑回归(Logistic Regression,LR)
  • 支持向量机(Support Vector Machine,SVM)
  • 决策树(Decision Tree,DT)

生成式模型

生成式模型在估计类概率之前学习输入的分布。生成式模型是一种能够学习数据生成过程的模型,它可以学习输入数据的概率分布,并生成新的数据样本。

更具体地说生成模型首先从训练数据中估计类别的条件密度P(x|y = k)和先验类别概率P(y = k)。他们试图了解每个分类的数据是如何生成的。

然后利用贝叶斯定理估计后验类概率:

贝叶斯规则的分母可以用分子中出现的变量来表示:

生成式模型也可以先学习输入和标签P(x, y)的联合分布,然后将其归一化以得到后验概率P(y = k|x)。一旦我们有了后验概率,我们就可以用它们将一个新的样本x分配给其中一个类(通常是后验概率最高的类)。

例如,考虑一个图像分类任务中,我们需要区分图像狗(y = 1)和猫(y = 0)。生成模型首先会建立一个狗 P(x|y = 1) 的模型,以及猫 P(x|y = 0) 的模型。然后在对新图像进行分类时,它会将其与两个模型进行匹配,以查看新图像看起来更像狗还是更像猫。

为生成模型允许我们从学习的输入分布P(x|y)中生成新的样本。所以我们将其称之为生成式模型。最简单的例子是,对于上面的模型我们可以通过从P(x|y = 1)中采样来生成新的狗的图像。

一般的生成模型包括

  • 朴素贝叶斯(Naïve Bayes)
  • 高斯混合模型(GMMs)
  • 隐马尔可夫模型(hmm)
  • 线性判别分析 (LDA)

深度生成模型(DGMs)结合了生成模型和深度神经网络:

  • 自编码器(Autoencoder,AE)
  • 生成式对抗网络(Generative Adversarial Network,GAN)
  • 自回归模型,例如GPT(Generative Pre-trained Transformer)是一种包含数十亿参数的自回归语言模型。

区别和优缺点

生成式模型和辨别式模型的主要区别在于它们学习的目标不同。生成式模型学习输入数据的分布,可以生成新的数据样本。辨别式模型学习输入数据和输出标签之间的关系,可以预测新的标签。

生成式模型:

生成模型给了我们更多的信息,因为它们同时学习输入分布和类概率。可以从学习的输入分布中生成新的样本。并且可以处理缺失的数据,因为它们可以在不使用缺失值的情况下估计输入分布。但是大多数判别模型要求所有的特征都存在。

训练复杂度高,因为生成式模型要建立输入数据和输出数据之间的联合分布,需要大量的计算和存储资源。对数据分布的假设比较强,因为生成式模型要建立输入数据和输出数据之间的联合分布,需要对数据的分布进行假设和建模,因此对于复杂的数据分布,生成式模型在小规模的计算资源上并不适用。

生成模型可以处理多模态数据,因为生成式模型可以建立输入数据和输出数据之间的多元联合分布,从而能够处理多模态数据。

辨别式模型:

如果不对数据做一些假设,生成式模型学习输入分布P(x|y)在计算上是困难的,例如,如果x由m个二进制特征组成,为了对P(x|y)建模,我们需要从每个类的数据中估计2个ᵐ参数(这些参数表示m个特征的2个ᵐ组合中的每一个的条件概率)。而Naïve Bayes等模型对特征进行条件独立性假设,以减少需要学习的参数数量,因此训练复杂度低。但是这样的假设通常会导致生成模型比判别模型表现得更差。

对于复杂的数据分布和高维数据具有很好的表现,因为辨别式模型可以灵活地对输入数据和输出数据之间的映射关系进行建模。

辨别式模型对噪声数据和缺失数据敏感,因为模型只考虑输入数据和输出数据之间的映射关系,不利用输入数据中的信息填补缺失值和去除噪声。

总结

生成式模型和辨别式模型都是机器学习中重要的模型类型,它们各自具有优点和适用场景。在实际应用中,需要根据具体任务的需求选择合适的模型,并结合混合模型和其他技术手段来提高模型的性能和效果。

https://avoid.overfit.cn/post/9dc20966c4824be18ef7e9fd1acabe51

作者:Roi Yehoshua

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/15667.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vue+Echart实现利用率表盘效果【组件已封装,可直接使用】

效果演示 当利用超过70%(可以自行设置),表盘变红 组件 里面对应两个图片资源,panelBackground_red.png 和 panelBackground_green.png,请前往百度网盘进行下载。如果喜欢其他颜色,可以使用.psd来修改导出…

基于html+css的图展示43

准备项目 项目开发工具 Visual Studio Code 1.44.2 版本: 1.44.2 提交: ff915844119ce9485abfe8aa9076ec76b5300ddd 日期: 2020-04-16T16:36:23.138Z Electron: 7.1.11 Chrome: 78.0.3904.130 Node.js: 12.8.1 V8: 7.8.279.23-electron.0 OS: Windows_NT x64 10.0.19044 项目…

vCenter(PSC)正常更改或重置administrator@vsphere.local用户的密码方法

1. 正常更改administratorvsphere.local用户密码 在vCenter界面中选择“菜单”下的“系统管理”,如下图所示: 然后在Single Sign On下的用户和组中,选择“vsphere.local”域,再对Administrator用户进行编辑,即可进行…

Unsupervised Learning of Depth and Ego-Motion from Video 论文精读

视频中深度和自我运动的无监督学习 摘要 我们提出了一个无监督学习框架,用于从非结构化视频序列中进行单眼深度和相机运动估计。与其他工作[10,14,16]一样,我们使用端到端的学习方法,将视图合成作为监督信号。与之前…

[openwrt] valgrind定位内存泄漏

目录 要求 valgrind 简介 工具介绍 linux程序的内存布局 内存检查的原理 valgrind的使用 使用举例 内存泄漏 内存越界 内存覆盖 Linux分配虚拟内存(申请内存)的两种方式 brk和mmap 要求 被调试程序带有-g参数编译,携带debug参数…

Ubuntu22.04部署Pytorch2.0深度学习环境

文章目录 安装Anaconda创建新环境安装Pytorch2.0安装VS CodeUbuntu下实时查看GPU状态的方法小实验:Ubuntu、Windows10下GPU训练速度对比 Ubuntu安装完显卡驱动、CUDA和cudnn后,下面部署深度学习环境。 (安装Ubuntu系统、显卡驱动、CUDA和cudn…

10 dubbo源码学习_线程池

1. 线程模型&线程池介绍1.1 线程池1.2 线程模型 2. 线程池源码分析2.1 FixedThreadPool2.2 CachedThreadPool2.3 LimitedThreadPool 3. 线程模型源码3.1 AllDispatcher3.2 DirectDispatcher3.3 MessageOnlyDispatcher3.4 ExecutionDispatcher3.5 ConnectionOrderedDispatch…

这些使用工具大推荐,现在知道不晚

1.Snip Snip是一款截图软件,它突出的优点就是可以制作滚动截图。 例如:对整个网页进行截图,使用Snip即可轻松获取,无需处理水印。 2.Sleep Cycle 快节奏、高压力的生活导致我们越来越晚睡觉,睡眠质量越来越差。 想提…

jsp家庭农场投入品信息管理系统Myeclipse开发mysql数据库web结构jsp编程计算机网页项目

一、源码特点 jsp家庭农场投入品信息管理系统是一套完善的java web信息管理系统 serlvet dao bean 开发,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发…

SQL学习日记

目录 一、数据定义(create,alter,drop) 1.1数据类型 补充注释 1.2定义基本表(create,alter,drop) 1.3约束 1.3.1主键约束 1.3.2外码约束 ​编辑 补充CASCADE 关键字 1.3.3…

深度学习 - 45.MMOE Gate 简单实现 By Keras

目录 一.引言 二.MMoE 模型分析 三.MMoE 逻辑实现 • Input • Expert Output • Gate Output • Weighted Sum • Sigmoid Output • 完整代码 四.总结 一.引言 上一篇文章介绍了 MMoE 借鉴 MoE 的思路,为每一类输出构建一个 Gate 并最终加权多个 Exper…

05 KVM虚拟化Linux Bridge环境部署

文章目录 05 KVM虚拟化Linux Bridge环境部署5.1 安装Linux Bridge5.1.1 安装bridge-utils软件包5.1.2 确认安装是否成功 5.2 配置Linux Bridge5.2.1 创建网桥br05.2.2 将物理网卡ens33绑定到Linux Bridge5.2.3 配置ens33的ip5.2.4 为Linux Bridge网桥br0分配ip5.2.4.1 DHCP设置…

sin(x) + cos(x) 的极大值和极小值

sinx cosx 的极大值和极小值 理论推导图像 今天遇到了一个问题,就是如何求解 sin ⁡ x cos ⁡ x \sin{x} \cos{x} sinxcosx 的极大值和极小值。这里特来记录一下。 理论推导 首先,我们假设: sin ⁡ x cos ⁡ x R sin ⁡ ( x α ) (…

Vue(Vue脚手架)

一、使用Vue脚手架(Vue Cli) Vue官方提供脚手架平台选择最新版本: 可以相加兼容的标准化开发工具(开发平台) 禁止:最新的开发技术版本和比较旧版本的开发平台 Vue CLI🛠️ Vue.js 开发的标准工…

所有知识付费都可以用 ChatGPT 再割一次?

伴随春天一起到来的,还有如雨后春笋般冒出的 ChatGPT / AI 相关的付费社群、课程训练营、知识星球等。 ChatGPT 吹来的这股 AI 热潮,这几个月想必大家多多少少都能感受到。 ▲ 图片来源:网络 这两张图是最近在圈子里看到的。 一张是国内各…

第五章——动态规划3

蒙德里安的梦想 我们在黑框内横着放红框,我们发现当横向小方格摆好之后,纵向小方格只能一次纵向摆好,即纵向小方格只有一种方案,即整个摆放小方格的方案数等于横着摆放小方格的方案数 f[i,j]表示的是现在要在第i列摆,j…

MyBats

一、MyBatis简介 1. MyBatis历史 MyBatis最初是Apache的一个开源项目iBatis, 2010年6月这个项目由Apache Software Foundation迁移到了Google Code。随着开发团队转投Google Code旗下, iBatis3.x正式更名为MyBatis。代码于2013年11月迁移到Github。 iBatis一词来…

Packet Tracer - 研究直连路由

Packet Tracer - 研究直连路由 目标 第 1 部分:研究 IPv4 直连路由 第 2 部分:研究 IPv6 直连路由 拓扑图 背景信息 本活动中的网络已配置。 您将登录路由器并使用 show 命令发现并回答以下有关直连路由的问题。 注:用户 EXEC 密码是 c…

通用智能的瓶颈及可能的解决途径

通用智能是指能够在各种不同的任务和环境中灵活地适应和执行任务的智能。通用智能与特定任务的智能相反,后者只能在特定领域或任务中表现出色。通用智能的理论基础是人工智能领域的通用人工智能(AGI)研究,旨在设计出能够像人类一样…

三分钟看懂Python分支循环规范:if elif for while

人生苦短,我用python 分支与循环 条件是分支与循环中最为核心的点, 解决的问题场景是不同的问题有不同的处理逻辑。 当满足单个或者多个条件或者不满足条件进入分支和循环, 这里也就说明这个对相同问题处理执行逻辑依据具体参数动态变化&…