【Linux】Linux进程间通信(二)

在这里插入图片描述

​📝个人主页:@Sherry的成长之路
🏠学习社区:Sherry的成长之路(个人社区)
📖专栏链接:Linux
🎯长路漫漫浩浩,万事皆有期待

上一篇博客:【Linux】Linux进程间通信(一)

文章目录

    • 命名管道
      • 命名管道的原理
      • 创建一个命名管道
      • 命名管道的打开规则
      • 用命名管道实现serve&client通信
      • 用命名管道实现派发计算任务
      • 用命名管道实现进程遥控
      • 用命名管道实现文件拷贝
      • 命名管道和匿名管道的区别
  • 总结:

命名管道

命名管道的原理

匿名管道只能用于具有共同祖先的进程(具有亲缘关系的进程)之间的通信,通常,一个管道由一个进程创建,然后该进程调用fork,此后父子进程之间就可应用该管道。
如果要实现两个毫不相关进程之间的通信,可以使用命名管道来做到。命名管道就是一种特殊类型的文件,两个进程通过命名管道的文件名打开同一个管道文件,此时这两个进程也就看到了同一份资源,进而就可以进行通信了。

注意:

普通文件是很难做到通信的,即便做到通信也无法解决一些安全问题。
命名管道和匿名管道一样,都是内存文件,只不过命名管道在磁盘有一个简单的映像,但这个映像的大小永远为0,因为命名管道和匿名管道都不会将通信数据刷新到磁盘当中。
使用命令创建命名管道
我们可以使用mkfifo命令创建一个命名管道。

mkfifo fifo

在这里插入图片描述

可以看到,创建出来的文件的类型是p,代表该文件是命名管道文件。
在这里插入图片描述

使用这个命名管道文件,就能实现两个进程之间的通信了。我们在一个进程(进程A)中用shell脚本每秒向命名管道写入一个字符串,在另一个进程(进程B)当中用cat命令从命名管道当中进行读取。
现象就是当进程A启动后,进程B会每秒从命名管道中读取一个字符串打印到显示器上。这就证明了这两个毫不相关的进程可以通过命名管道进行数据传输,即通信。
在这里插入图片描述

之前我们说过,当管道的读端进程退出后,写端进程再向管道写入数据就没有意义了,此时写端进程会被操作系统杀掉,在这里就可以很好的得到验证:当我们终止掉读端进程后,因为写端执行的循环脚本是由命令行解释器bash执行的,所以此时bash就会被操作系统杀掉,我们的云服务器也就退出了。

创建一个命名管道

在程序中创建命名管道使用mkfifo函数,mkfifo函数的函数原型如下:

int mkfifo(const char *pathname, mode_t mode);

mkfifo函数的第一个参数是pathname,表示要创建的命名管道文件。

若pathname以路径的方式给出,则将命名管道文件创建在pathname路径下。
若pathname以文件名的方式给出,则将命名管道文件默认创建在当前路径下。(注意当前路径的含义)

mkfifo函数的第二个参数是mode,表示创建命名管道文件的默认权限。

例如,将mode设置为0666,则命名管道文件创建出来的权限如下:

prw-rw-rw-

但实际上创建出来文件的权限值还会受到umask(文件默认掩码)的影响,实际创建出来文件的权限为:mode&(~umask)。umask的默认值一般为0002,当我们设置mode值为0666时实际创建出来文件的权限为0664。

prw-rw-r--

若想创建出来命名管道文件的权限值不受umask的影响,则需要在创建文件前使用umask函数将文件默认掩码设置为0。

umask(0); //将文件默认掩码设置为0

mkfifo函数的返回值。

命名管道创建成功,返回0。
命名管道创建失败,返回-1。

创建命名管道示例:

使用以下代码即可在当前路径下,创建出一个名为myfifo的命名管道。

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FILE_NAME "myfifo"

int main()
{
	umask(0); //将文件默认掩码设置为0
	if (mkfifo(FILE_NAME, 0666) < 0){ //使用mkfifo创建命名管道文件
		perror("mkfifo");
		return 1;
	}

	//create success...

	return 0;
}

运行代码后,命名管道myfifo就在当前路径下被创建了。
在这里插入图片描述

命名管道的打开规则

1、如果当前打开操作是为读而打开FIFO时。

O_NONBLOCK disable:阻塞直到有相应进程为写而打开该FIFO。
O_NONBLOCK enable:立刻返回成功。

2、如果当前打开操作是为写而打开FIFO时。

O_NONBLOCK disable:阻塞直到有相应进程为读而打开该FIFO。
O_NONBLOCK enable:立刻返回失败,错误码为ENXIO。

用命名管道实现serve&client通信

实现服务端(server)和客户端(client)之间的通信之前,我们需要先让服务端运行起来,我们需要让服务端运行后创建一个命名管道文件,然后再以读的方式打开该命名管道文件,之后服务端就可以从该命名管道当中读取客户端发来的通信信息了。

服务端的代码如下:

//server.c
#include "comm.h"

int main()
{
	umask(0); //将文件默认掩码设置为0
	if (mkfifo(FILE_NAME, 0666) < 0){ //使用mkfifo创建命名管道文件
		perror("mkfifo");
		return 1;
	}
	int fd = open(FILE_NAME, O_RDONLY); //以读的方式打开命名管道文件
	if (fd < 0){
		perror("open");
		return 2;
	}
	char msg[128];
	while (1){
		msg[0] = '\0'; //每次读之前将msg清空
		//从命名管道当中读取信息
		ssize_t s = read(fd, msg, sizeof(msg)-1);
		if (s > 0){
			msg[s] = '\0'; //手动设置'\0',便于输出
			printf("client# %s\n", msg); //输出客户端发来的信息
		}
		else if (s == 0){
			printf("client quit!\n");
			break;
		}
		else{
			printf("read error!\n");
			break;
		}
	}
	close(fd); //通信完毕,关闭命名管道文件
	return 0;
}

而对于客户端来说,因为服务端运行起来后命名管道文件就已经被创建了,所以客户端只需以写的方式打开该命名管道文件,之后客户端就可以将通信信息写入到命名管道文件当中,进而实现和服务端的通信。

客户端的代码如下:

//client.c
#include "comm.h"

int main()
{
	int fd = open(FILE_NAME, O_WRONLY); //以写的方式打开命名管道文件
	if (fd < 0){
		perror("open");
		return 1;
	}
	char msg[128];
	while (1){
		msg[0] = '\0'; //每次读之前将msg清空
		printf("Please Enter# "); //提示客户端输入
		fflush(stdout);
		//从客户端的标准输入流读取信息
		ssize_t s = read(0, msg, sizeof(msg)-1);
		if (s > 0){
			msg[s - 1] = '\0';
			//将信息写入命名管道
			write(fd, msg, strlen(msg));
		}
	}
	close(fd); //通信完毕,关闭命名管道文件
	return 0;
}

对于如何让客户端和服务端使用同一个命名管道文件,这里我们可以让客户端和服务端包含同一个头文件,该头文件当中提供这个共用的命名管道文件的文件名,这样客户端和服务端就可以通过这个文件名,打开同一个命名管道文件,进而进行通信了。

共用头文件的代码如下:

//comm.h
#pragma once

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <fcntl.h>

#define FILE_NAME "myfifo" //让客户端和服务端使用同一个命名管道

代码编写完毕后,先将服务端进程运行起来,之后我们就能在客户端看到这个已经被创建的命名管道文件。
在这里插入图片描述

接着再将客户端也运行起来,此时我们从客户端写入的信息被客户端写入到命名管道当中,服务端再从命名管道当中将信息读取出来打印在服务端的显示器上,该现象说明服务端是能够通过命名管道获取到客户端发来的信息的,换句话说,此时这两个进程之间是能够通信的。
在这里插入图片描述

当客户端和服务端运行起来时,我们还可以通过ps命令查看这两个进程的信息,可以发现这两个进程确实是两个毫不相关的进程,因为它们的PID和PPID都不相同。也就证明了,命名管道是可以实现两个毫不相关进程之间的通信的。
在这里插入图片描述

服务端和客户端之间的退出关系

当客户端退出后,服务端将管道当中的数据读完后就再也读不到数据了,那么此时服务端也就会去执行它的其他代码了(在当前代码中是直接退出了)。
在这里插入图片描述

当服务端退出后,客户端写入管道的数据就不会被读取了,也就没有意义了,那么当客户端下一次再向管道写入数据时,就会收到操作系统发来的13号信号(SIGPIPE),此时客户端就被操作系统强制杀掉了。
在这里插入图片描述

通信是在内存当中进行的

若是我们只让客户端向管道写入数据,而服务端不从管道读取数据,那么这个管道文件的大小会不会发生变化呢?

//server.c
#include "comm.h"

int main()
{
	umask(0); //将文件默认掩码设置为0
	if (mkfifo(FILE_NAME, 0666) < 0){ //使用mkfifo创建命名管道文件
		perror("mkfifo");
		return 1;
	}
	int fd = open(FILE_NAME, O_RDONLY); //以读的方式打开命名管道文件
	if (fd < 0){
		perror("open");
		return 2;
	}
	while (1){
		//服务端不读取管道信息
	}
	close(fd); //通信完毕,关闭命名管道文件
	return 0;
}

可以看到,尽管服务端不读取管道当中的数据,但是管道当中的数据并没有被刷新到磁盘,使用ll命令看到命名管道文件的大小依旧为0,也就说明了双方进程之间的通信依旧是在内存当中进行的,和匿名管道通信是一样的。
在这里插入图片描述

用命名管道实现派发计算任务

需要注意的是两个进程之间的通信,并不是简单的发送字符串而已,服务端是会对客户端发送过来的信息进行某些处理的。

这里我们以客户端向服务端派发计算任务为例,客户端通过管道向服务端发送双操作数的计算请求,服务端接收到客户端的信息后需要计算出相应的结果。

这里我们无需更改客户端的代码,只需改变服务端处理通信信息的逻辑即可。

//server.c
#include "comm.h"

int main()
{
	umask(0); //将文件默认掩码设置为0
	if (mkfifo(FILE_NAME, 0666) < 0){ //使用mkfifo创建命名管道文件
		perror("mkfifo");
		return 1;
	}
	int fd = open(FILE_NAME, O_RDONLY); //打开命名管道文件
	if (fd < 0){
		perror("open");
		return 2;
	}
	char msg[128];
	while (1){
		msg[0] = '\0'; //每次读之前将msg清空
		//从命名管道当中读取信息
		ssize_t s = read(fd, msg, sizeof(msg)-1);
		if (s > 0){
			msg[s] = '\0'; //手动设置'\0',便于输出
			printf("client# %s\n", msg);
			//服务端进行计算任务
		    char* lable = "+-*/%";
			char* p = msg;
			int flag = 0;
			while (*p){
				switch (*p){
				case '+':
					flag = 0;
					break;
				case '-':
					flag = 1;
					break;
				case '*':
					flag = 2;
					break;
				case '/':
					flag = 3;
					break;
				case '%':
					flag = 4;
					break;
				}
				p++;
			}
			char* data1 = strtok(msg, "+-*/%");
			char* data2 = strtok(NULL, "+-*/%");
			int num1 = atoi(data1);
			int num2 = atoi(data2);
			int ret = 0;
			switch (flag){
			case 0:
				ret = num1 + num2;
				break;
			case 1:
				ret = num1 - num2;
				break;
			case 2:
				ret = num1 * num2;
				break;
			case 3:
				ret = num1 / num2;
				break;
			case 4:
				ret = num1 % num2;
				break;
			}
			printf("%d %c %d = %d\n", num1, lable[flag], num2, ret); //打印计算结果
		}
		else if (s == 0){
			printf("client quit!\n");
			break;
		}
		else{
			printf("read error!\n");
			break;
		}
	}
	close(fd); //通信完毕,关闭命名管道文件
	return 0;
}

此时服务端接收到客户端的信息后,需要进行的处理动作就不是将其打印到显示器了,而是需要将信息经过进一步的处理,从而得到相应的结果。
在这里插入图片描述

用命名管道实现进程遥控

比较有意思的是,我们可以通过一个进程来控制另一个进程的行为,比如我们从客户端输入命令到管道当中,再让服务端将管道当中的命令读取出来并执行。

下面我们只实现了让服务端执行不带选项的命令,若是想让服务端执行带选项的命令,可以对管道当中获取的命令进行解析处理。这里的实现非常简单,只需让服务端从管道当中读取命令后创建子进程,然后再进行进程程序替换即可。

这里也无需更改客户端的代码,只需改变服务端处理通信信息的逻辑即可。

#include "comm.h"

int main()
{
	umask(0); //将文件默认掩码设置为0
	if (mkfifo(FILE_NAME, 0666) < 0){ //使用mkfifo创建命名管道文件
		perror("mkfifo");
		return 1;
	}
	int fd = open(FILE_NAME, O_RDONLY); //以读的方式打开命名管道文件
	if (fd < 0){
		perror("open");
		return 2;
	}
	char msg[128];
	while (1){
		msg[0] = '\0'; //每次读之前将msg清空
		//从命名管道当中读取信息
		ssize_t s = read(fd, msg, sizeof(msg)-1);
		if (s > 0){
			msg[s] = '\0'; //手动设置'\0',便于输出
			printf("client# %s\n", msg);
			if (fork() == 0){
				//child
				execlp(msg, msg, NULL); //进程程序替换
				exit(1);
			}
			waitpid(-1, NULL, 0); //等待子进程
		}
		else if (s == 0){
			printf("client quit!\n");
			break;
		}
		else{
			printf("read error!\n");
			break;
		}
	}
	close(fd); //通信完毕,关闭命名管道文件
	return 0;
}

此时服务端接收到客户端的信息后,便进行进程程序替换,进而执行客户端发送过来的命令。
在这里插入图片描述

用命名管道实现文件拷贝

这里我们再用命名管道实现一下文件的拷贝。

需要拷贝的文件是file.txt,该文件当中的内容如下:
在这里插入图片描述

我们要做的就是,让客户端将file.txt文件通过管道发送给服务端,在服务端创建一个file-bat.txt文件,并将从管道获取到的数据写入file-bat.txt文件当中,至此便实现了file.txt文件的拷贝。

其中服务端需要做的就是,创建命名管道并以读的方式打开该命名管道,再创建一个名为file-bat.txt的文件,之后需要做的就是将从管道当中读取到的数据写入到file-bat.txt文件当中即可。

服务端的代码如下:

//server.c
#include "comm.h"

int main()
{
	umask(0); //将文件默认掩码设置为0
	if (mkfifo(FILE_NAME, 0666) < 0){ //使用mkfifo创建命名管道文件
		perror("mkfifo");
		return 1;
	}
	int fd = open(FILE_NAME, O_RDONLY); //以读的方式打开命名管道文件
	if (fd < 0){
		perror("open");
		return 2;
	}
	//创建文件file-bat.txt,并以写的方式打开该文件
	int fdout = open("file-bat.txt", O_CREAT | O_WRONLY, 0666);
	if (fdout < 0){
		perror("open");
		return 3;
	}
	char msg[128];
	while (1){
		msg[0] = '\0'; //每次读之前将msg清空
		//从命名管道当中读取信息
		ssize_t s = read(fd, msg, sizeof(msg)-1);
		if (s > 0){
			write(fdout, msg, s); //将读取到的信息写入到file-bat.txt文件当中
		}
		else if (s == 0){
			printf("client quit!\n");
			break;
		}
		else{
			printf("read error!\n");
			break;
		}
	}
	close(fd); //通信完毕,关闭命名管道文件
	close(fdout); //数据写入完毕,关闭file-bat.txt文件
	return 0;
}

而客户端需要做的就是,以写的方式打开这个已经存在的命名管道文件,再以读的方式打开file.txt文件,之后需要做的就是将file.txt文件当中的数据读取出来并写入管道当中即可。

客户端的代码如下:

//client.c
#include "comm.h"

int main()
{
	int fd = open(FILE_NAME, O_WRONLY); //以写的方式打开命名管道文件
	if (fd < 0){
		perror("open");
		return 1;
	}
	int fdin = open("file.txt", O_RDONLY); //以读的方式打开file.txt文件
	if (fdin < 0){
		perror("open");
		return 2;
	}
	char msg[128];
	while (1){
		//从file.txt文件当中读取数据
		ssize_t s = read(fdin, msg, sizeof(msg));
		if (s > 0){
			write(fd, msg, s); //将读取到的数据写入到命名管道当中
		}
		else if (s == 0){
			printf("read end of file!\n");
			 break;
		}
		else{
			printf("read error!\n");
			break;
		}
	}
	close(fd); //通信完毕,关闭命名管道文件
	close(fdin); //数据读取完毕,关闭file.txt文件
	return 0;
}

共用头文件的代码和之前的一样,如下:

//comm.h
#pragma once

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <fcntl.h>

#define FILE_NAME "myfifo" //让客户端和服务端使用同一个命名管道

编写完代码后,先运行服务端,再运行客户端,一瞬间这两个进程就相继运行结束了。
在这里插入图片描述

此时使用ll命令就可以看到,已经完成了file.txt文件的拷贝。
在这里插入图片描述

使用cat命令打印file-bat.txt文件当中的内容,发现和file.txt文件当中的内容相同,拷贝文件成功。
在这里插入图片描述

使用管道实现文件的拷贝有什么意义?

因为这里是使用管道在本地进行的文件拷贝,所以看似没什么意义,但我们若是将这里的管道想象成“网络”,将客户端想象成“Windows Xshell”,再将服务端想象成“centos服务器”。那我们此时实现的就是文件上传的功能,若是将方向反过来,那么实现的就是文件下载的功能。
在这里插入图片描述

命名管道和匿名管道的区别

匿名管道由pipe函数创建并打开。
命名管道由mkfifo函数创建,由open函数打开。
FIFO(命名管道)与pipe(匿名管道)之间唯一的区别在于它们创建与打开的方式不同,一旦这些工作完成之后,它们具有相同的语义。

命令行当中的管道
现有data.txt文件,文件当中的内容如下:
在这里插入图片描述

我们可以利用管道(“|”)同时使用cat命令和grep命令,进而实现文本过滤。

cat data.txt | grep sherry

在这里插入图片描述

那么在命令行当中的管道(“|”)到底是匿名管道还是命名管道呢?

由于匿名管道只能用于有亲缘关系的进程之间的通信,而命名管道可以用于两个毫不相关的进程之间的通信,因此我们可以先看看命令行当中用管道(“|”)连接起来的各个进程之间是否具有亲缘关系。

下面通过管道(“|”)连接了三个进程,通过ps命令查看这三个进程可以发现,这三个进程的PPID是相同的,也就是说它们是由同一个父进程创建的子进程。
在这里插入图片描述

而它们的父进程实际上就是命令行解释器,这里为bash。
在这里插入图片描述

也就是说,由管道(“|”)连接起来的各个进程是有亲缘关系的,它们之间互为兄弟进程。
在这里插入图片描述
现在我们已经知道了,若是两个进程之间采用的是命名管道,那么在磁盘上必须有一个对应的命名管道文件名,而实际上我们在使用命令的时候并不存在类似的命名管道文件名,因此命令行上的管道实际上是匿名管道。

总结:

今天我们学习了Linux进程间通信的相关知识,了解了进程间通信介绍,管道等 。接下来,我们将继续学习Linux的其他知识。希望我的文章和讲解能对大家的学习提供一些帮助。

当然,本文仍有许多不足之处,欢迎各位小伙伴们随时私信交流、批评指正!我们下期见~

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/156061.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VUE指令、computed计算属性和watch 侦听器(附带详细案例)

文章目录 前言一、指令补充1. 指令修饰符2. v-bind对于样式操作的增强 - class3. 案例 - 京东秒杀 tab 导航高亮4. v-bind对于样式操作的增强 - style5. v-model应用于其他表单元素 二、computed计算属性1. 基础语法2. 计算属性 vS method 方法3. 完整写法4. 成绩案例 三、watc…

android PopupWindow设置

记录一个小功能&#xff0c;使用场景&#xff0c;列表项点击弹出 如图&#xff1a; java类代码&#xff1a; public class PopupUtil extends PopupWindow {private Activity context;private View view;private ListView listView;private TextView m_tv_reminderm, m_tv_Wa…

4.1 Windows驱动开发:内核中进程与句柄互转

在内核开发中&#xff0c;经常需要进行进程和句柄之间的互相转换。进程通常由一个唯一的进程标识符&#xff08;PID&#xff09;来标识&#xff0c;而句柄是指对内核对象的引用。在Windows内核中&#xff0c;EProcess结构表示一个进程&#xff0c;而HANDLE是一个句柄。 为了实…

Java集合List报错,java.lang.UnsupportedOperationException

目录 一、点击Arrays.asList源码&#xff0c;一探究竟二、习惯了Arrays.asList&#xff0c;就是想用.add()添加元素&#xff0c;怎么办&#xff1f;三、又有一个同事&#xff0c;是这样写的四、重新点击Arrays.asList源码&#xff0c;一探究竟五、全是坑&#xff0c;怎么办&…

muduo源码剖析之TcpServer服务端

简介 TcpServer拥有Acceptor类&#xff0c;新连接到达时new TcpConnection后续客户端和TcpConnection类交互。TcpServer管理连接和启动线程池&#xff0c;用Acceptor接受连接。 服务端封装 - muduo的server端维护了多个tcpconnection 注意TcpServer本身不带Channel&#xff0…

element-plus使用el-date-picker组件时,如何禁止用户选择当前时间之后的日时分秒

element-plus使用el-date-picker组件时&#xff0c;如何禁止用户选择当前时间之后的日时分秒 例&#xff1a; 当前时间为2023-11-15 14.24&#xff0c;不能选择这之后的时分秒。&#xff08;禁止用户选择2023-11-15 14.28&#xff09; <el-date-pickerv-model"form.s…

腾讯混元大模型与GPT3.5代码能力对比

今日&#xff0c;别的事情不干&#xff0c;来使用一下"腾讯混元大模型"。对比一下"GPT3.5"&#xff0c;看看效果。据说"腾讯混元大模型"代码方面是强项&#xff0c;特意申请了一个来体验一波。 ✨本章仅以Python为主题&#xff0c;展开体验。最后…

解决Jira导出csv最大限度是1000的问题

JIRA为了防止过多影响性能&#xff0c; 设置了导出CSV的上线为1000&#xff0c;影响了搜索结果导出以及RestAPI。 可以通过以下配置参数修改此限制&#xff1a; 通过JIRA管理界面的"高级设置 “设置以下参数 系统管理 > 系统 > 一般设置>高级设置找到 jira.sea…

如何将图片转为excel或word?(客户端)

演示软件&#xff1a;金鸣表格文字识别大师3.6.1&#xff08;新版本界面可能会略有不同&#xff09; 第一部分 将图片转为excel或文表混合的word 一般的软件要将图片转为可编辑的excel&#xff0c;都需要待识别的图片要有明显清晰的表格线&#xff0c;但我们程序现已克服了这…

vue-组件生命周期+网络请求

​&#x1f308;个人主页&#xff1a;前端青山 &#x1f525;系列专栏&#xff1a;Vue篇 &#x1f516;人终将被年少不可得之物困其一生 依旧青山,本期给大家带来vue篇专栏内容:vue-组件生命周期网络请求 目录 组件生命周期 1. Vue的生命周期 2. Vue 子组件和父组件执行顺序…

消息通讯-MQTT WebHookSpringBoot案例

一、EMQX WebHook介绍 1、EMQX WebHook 是由 emqx_web_hook (opens new window)插件提供的将EMQX中的钩子事件通知到某个Web服务的功能。 2、WebHook 的内部实现是基于钩子&#xff0c;借助 Webhook 可以完成设备在线、上下线记录&#xff0c;订阅与消息存储、消息送达确认等诸…

【开源】基于Vue和SpringBoot的固始鹅块销售系统

项目编号&#xff1a; S 060 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S060&#xff0c;文末获取源码。} 项目编号&#xff1a;S060&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 鹅块类型模块2.3 固…

绕过类安全问题分析方法

什么是绕过 逻辑漏洞是指程序设计中逻辑不严密&#xff0c;使攻击者能篡改、绕过或中断程序&#xff0c;令其偏离开发人员预期的执行。 常见表现形式 1、接口&#xff08;功能类&#xff09;绕过&#xff1a;即接口或功能中通过某参数&#xff0c;绕过程序校验 2、流程类绕…

[模版总结] - 树的基本算法2 - BST

BST定义 BST - Binary Search Tree, 即二叉搜索树(有序二叉树) 特性 中序遍历有序查找/插入/删除某个数值可以通过 即树的高度&#xff0c;最优,最坏 . 有多种改进BST可以动态维持插入删除后树结构能尽可能保持平衡 BST基本操作 查询 - 二分查找 搜索数值 - 二分法 class…

有Mac或无Mac电脑通用的获取安卓公钥的方案

从2023年9月开始&#xff0c;所有上架应用市场的app都需要进行APP备案。 其中后端服务器在阿里云的可以在阿里云备案&#xff0c;后端服务器在腾讯云的可以在腾讯云备案。但无论你是在什么云厂商里做备案&#xff0c;无一例外的是&#xff0c;无论是上架安卓应用还是上架IOS应…

Python大数据学习问题整理汇总

day01 分区表与分桶表的区别 在这里插入代码片day02 数据仓分层/与本质 数据仓库(OLAP)的本质叫联机分析处理, 一般针对某些主题的历史数据进行分析 主要面向分析,支持管理决策。源数据层&#xff08;ODS&#xff09;&#xff1a; 此层数据无任何更改&#xff0c;直接沿用外围…

【2021集创赛】基于arm Cortex-M3处理器与深度学习加速器的实时人脸口罩检测 SoC

团队介绍 参赛单位&#xff1a;深圳大学 队伍名称&#xff1a;光之巨人队 指导老师&#xff1a;钟世达、袁涛 参赛队员&#xff1a;冯昊港、潘家豪、慕镐泽 图1 团队风采 1. 项目简介 新冠疫情席卷全球&#xff0c;有效佩戴口罩可以极大程度地减小病毒感染的风险。本项目开发…

JWT登录认证(3拦截器)

Jwt登录认证&#xff08;拦截器&#xff09;&#xff1a; 使用拦截器统一验证令牌 登录和注册接口需要放行 interceptors.LoginInterceptor&#xff1a;&#xff08;注册一个拦截器&#xff09; package com.lin.springboot01.interceptors;import com.lin.springboot01.pojo.…

wpf devexpress添加TreeListControl到项目

此教程示范如何添加TreeListControl到项目和绑定控件自引用数据源&#xff1a; 添加数据模型 绑定tree&#xff0c;并添加如下字段到数据源对象&#xff1a; Key字段包含唯一值索引节点 Parent字段包含父索引节点 添加数据模型&#xff08;Employee和Staff类&#xff09;到…

物理驱动深度学习方法总结

一、物理驱动深度学习方法总结 现有博主更新物理驱动深度学方法总体介绍 二、 PINN介绍 PINN综述Blog介绍&#xff1a;内嵌物理知识神经网络 &#xff08;Physics Informed Neural Network&#xff0c;简称PINN&#xff09; 是一种科学机器在传统数值领域的应用方法&…