图像处理:均值滤波算法

目录

前言

概念介绍

基本原理

Opencv实现中值滤波

Python手写实现均值滤波

参考文章


前言

在此之前,我曾在此篇中推导过图像处理:推导五种滤波算法(均值、中值、高斯、双边、引导)。这在此基础上,我想更深入地研究和推导这些算法,以便为将来处理图像的项目打下基础。

概念介绍

均值滤波是一种简单的图像平滑处理方法,其基本思想是用像素点周围的邻域像素的平均值来代替该像素的值。在图像处理中,均值滤波可以用于去除图像中的噪声,使图像变得更加平滑。它的计算简单易懂,但在滤波过程中可能会导致图像细节的损失。因此,在实际应用中,需要根据具体的情况选择适合的滤波算法。

基本原理

我们以5x5大小为例,均值滤波的原理只需要理解到,它其实是将这个范围内的25个值进行求和的平均值,以这个新值来代替这个区域的中心值。

配合这里的图进行理解:

 右图是经过左图进行均值变换后的值。

print((197+25+106+156+159+149+40+107+17+71+163+198+226+223+156+222+37+68+193+157+42+72+250+41+75)/25)

运行之后,获得新值126,覆盖掉中心值得像素226。

对于边缘像素,只仅仅计算在这个范围内得数值。

假如,左上角为中心值,而其左边和上边都没有值,我们只需要计算在这5x5区域内有的值就可以了。

计算如下:

print((23+0+25+158+140+238+67+199+197)/9)

得出新值为116,替换中心点23的值。

Opencv实现中值滤波

def blur(src, ksize, dst=None, anchor=None, borderType=None):

在OpenCV中,我们可以使用cv2.blur()函数来实现均值滤波。在使用该函数时,我们需要输入原始图像、滤波核的大小以及边界样式等参数。一般情况下,我们可以直接采用函数默认值即可。

这里我拿的是我个人的一个使用情况来看待的,像锚点,边界样式这种,我基本上没有遇到要修改的情况,现在我们来看看滤波核的大小对图片的影响。

import cv2
import pyps.pyzjr.utility as zjr

path = 'Images/Colnoiselena.jpg'
img = cv2.imread(path)
imgAverage_1 = cv2.blur(img, (1, 1))
imgAverage_3 = cv2.blur(img, (3, 3))
imgAverage_5 = cv2.blur(img, (5, 5))
imgAverage_7 = cv2.blur(img, (7, 7))
imgStack = zjr.stackImages(0.6, ([imgAverage_1, imgAverage_3], [imgAverage_5, imgAverage_7]))
cv2.imshow("imges",imgStack)
cv2.waitKey(0)

实现效果:

经典的lena的图片,可以看到,随着滤波核的大小逐渐增加,去噪效果越好,但相应的图片会变的模糊,计算时间会增长。所以,还是应了我开头就说过的话,在实际处理中,选择合适的滤波核大小,让模糊与去噪效果之间取得平衡。

pyps并不是什么第三方库,只是我集成在一起的函数文件,你无需在意。

Python手写实现均值滤波

import cv2
import numpy as np
import pyps.pyzjr.utility as zjr

path = 'Images/Colnoiselena.jpg'
img = cv2.imread(path)

def Arerage_Filtering(img, k_size=3):
    if k_size % 2 == 0:
        k_size += 1
    rows, cols = img.shape[:2]
    pad_width = (k_size - 1) // 2
    img_pad = cv2.copyMakeBorder(img, pad_width, pad_width, pad_width, pad_width, cv2.BORDER_REPLICATE)
    img_filter = np.zeros_like(img)
    for i in range(rows):
        for j in range(cols):
            pixel_values = img_pad[i:i+k_size, j:j+k_size].flatten()
            img_filter[i, j] = np.mean(pixel_values)

    return img_filter

imgAverage_1 = Arerage_Filtering(img,k_size=1)
imgAverage_3 = Arerage_Filtering(img,k_size=3)
imgAverage_5 = Arerage_Filtering(img,k_size=5)
imgAverage_7 = Arerage_Filtering(img,k_size=7)
imgStack = zjr.stackImages(0.6, ([imgAverage_1, imgAverage_3], [imgAverage_5, imgAverage_7]))
cv2.imshow("imges",imgStack)
cv2.waitKey(0)
cv2.destroyAllWindows()

这个算法相对来说比较容易实现,但是相比调用OpenCV的函数,它的计算时间要长很多,而且我这里还只考虑了图像的两个通道,最终输出的结果是灰度图的情况下。

下面是这个函数的具体实现过程:

  1. 首先,判断卷积核的大小是否为奇数,如果为偶数,则将其加1,确保其大小为奇数。
  2. 获取图像的行数和列数。
  3. 计算填充的宽度,即卷积核宽度的一半,用于处理图像边缘。
  4. 使用cv2.copyMakeBorder函数进行边缘填充,将图像的边缘复制并填充到周围,以防止边缘像素点无法进行卷积。
  5. 初始化一个和原始图像大小一样的零矩阵。
  6. 遍历图像中的每一个像素点,计算该像素点周围邻域内的像素值,并求取其平均值,然后将其赋值给零矩阵中的对应像素点。
  7. 返回处理后的图像。

最后,函数通过stackImages函数将处理后的四张图像以2x2的网格形式拼接成一张图像,并展示结果。

参考文章

(6条消息) 图像处理:推导五种滤波算法(均值、中值、高斯、双边、引导)_高斯滤波,均值滤波,中值滤波_夏天是冰红茶的博客-CSDN博客

(6条消息) 均值滤波(Mean filtering)_半濠春水的博客-CSDN博客

(7条消息) Opencv之图像滤波:2.均值滤波(cv2.blur)_Justth.的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/15567.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

wvp开发环境搭建

代码下载地址 代码下载地址 https://gitee.com/pan648540858/wvp-GB28181-pro.git 开发工具 采用jetbrain idea 利用开发工具下载代码 文件-新建-来自版本控制的项目 url是上面的代码下载链接,点击克隆即可 下图是已经克隆并打开的代码 安装依赖环境 安装redi…

d2l Transformer

终于到变形金刚了,他的主要特征在于多头自注意力的使用,以及摒弃了rnn的操作。 目录 1.原理 2.多头注意力 3.逐位前馈网络FFN 4.层归一化 5.残差连接 6.Encoder 7.Decoder 8.训练 9.预测 1.原理 主要贡献:1.纯使用attention的Enco…

计算机网络学习03(OSI、TCP/IP网络分层模型详解))

1、OSI 七层模型 OSI 七层模型 是国际标准化组织提出一个网络分层模型,其大体结构以及每一层提供的功能如下图所示: 每一层都专注做一件事情,并且每一层都需要使用下一层提供的功能比如传输层需要使用网络层提供的路由和寻址功能&#xff0…

创建NAT模式KVM虚拟机

创建NAT模式KVM虚拟机 1 添加脚本执行权限(上传脚本文件至root目录)。 首先需要给脚本赋予执行权限。 # chmod x qemu-ifup-NAT 2 启动虚拟机。 通过命令启动虚拟机。(记得安装net-tools) # yum install net-tools -y # qemu-kvm -m 1024 -drive fi…

WSL怎么使用本机进行代理联网

文章目录 WSL怎么使用本机代理进行联网问题来源设置v2rayN设置wsl总结参考 WSL怎么使用本机代理进行联网 问题来源 使用WSL克隆github的代码网速很慢,无响应,导致项目无法下载,真的愁人。就想到为WSL设置xx上网,是否就会好很多。…

超级详细的华为OSPF实验及配置

什么是OSPF? 开放式最短路径优先OSPF(Open Shortest Path First)是IETF组织开发的一个基于链路状态的内部网关协议(Interior Gateway Protocol)。 目前针对IPv4协议使用的是OSPF Version 2(RFC2328&#x…

网络安全:通过445端口暴力破解植入木马。

网络安全:通过445端口暴力破解植入木马。 木马制作工具,如:灰鸽子等等 445端口是文件共享端口。可以进入对方文件硬盘进行植入木马: 使用文件共享进入对方磁盘: 在cmd输入net use \\x.x.x.x\ipc$ 之后会让你输入账号…

“数字中国·福启海丝”多屏互动光影艺术秀27日在福州举办

作为深化“数字海丝”的核心区、海上丝绸之路的枢纽城市,为喜迎第六届数字中国建设峰会盛大召开之际,福州市人民政府特此举办“数字中国福启海丝”多屏互动光影秀活动。本次光影秀活动是由福建省文化和旅游厅指导,福州市人民政府主办&#xf…

AutoGPT、AgentGPT、BabyAGI、HuggingGPT、CAMEL:各种基于GPT-4自治系统总结

ChatGPT和LLM技术的出现使得这些最先进的语言模型席卷了世界,不仅是AI的开发人员,爱好者和一些组织也在研究探索集成和构建这些模型的创新方法。各种平台如雨后春笋般涌现,集成并促进新应用程序的开发。 AutoGPT的火爆让我们看到越来越多的自…

机器学习实战:Python基于SVD奇异值分解进行矩阵分解(八)

文章目录 1 前言1.1 奇异值分解1.2 奇异值分解的应用 2 简单计算SVD2.1 NumPy 计算 SVD2.2 scikit-learn 计算截断 SVD2.3 scikit-learn 计算随机 SVD 3 demo数据演示3.1 导入函数3.2 导入数据3.3 计算SVD 4 讨论 1 前言 1.1 奇异值分解 奇异值分解(Singular Valu…

【Python | 基础语法篇】02、标识符、运算符、字符串扩展及数据输入

目录 一、标识符 1.1 什么是标识符 1.2 标识符命名规则 1.2.1 标识符命名规则 - 内容限定 1.2.2 标识符命名规则 - 大小写敏感 1.2.3 标识符命名规则 - 不可使用关键字 1.3 案例演示 1.4 变量命名规范 1.4.1 变量命名规范 - 见名知意 ​1.4.2 变量命名规范 - 下划线…

MySQL——存储过程和函数从零基础到入门必学教程(涵盖基础实战)

文章目录 目录 文章目录 前言 一、创建存储过程 二、在存储过程中使用变量 1.定义变量 2.为变量赋值 三、光标的使用 1.打开光标 2.打开光标 3.使用光标 4.关闭光标 四、流程控制的作用 1.IF语句 2.CASE语句 3.LOOP语句 4.LEAVE语句 5.ITERATE语句 6.REPEAT语…

浅述 国产仪器 1761程控模块电源

1761程控模块电源是在自动测试环境中提供偏置功率和对部件或最终产品提供激励的理想设备,是测试系统必备的测试仪器。适用于研发、设计、生产制造等自动测试领域。 1761程控模块电源为用户选配电源提供了灵活性,根据需要可选购1~8种&#xff…

五一堵车 | AI“高速”车辆检测轻而易举监测大家安全

点击蓝字关注我们 关注并星标 从此不迷路 计算机视觉研究院 学习群|扫码在主页获取加入方式 计算机视觉研究院专栏 作者:Edison_G 五一节不管是离开小城镇还是进入大城市,每个高速路口都是堵车,现在人工智能愈来愈发达&#xff0c…

linux常用命令大全

作为开发者,Linux是我们必须掌握的操作系统之一。因此,在编写代码和部署应用程序时,熟练使用Linux命令非常重要。这些常用命令不得不会,掌握这些命令,工作上会事半功倍,大大提高工作效率。 一. 文件和目录…

OJ刷题 第十三篇

22102 - 将字符串反序 时间限制 : 1 秒 内存限制 : 128 MB 请将一个给定的字符串反序(字符长度为1到10000,且有可能包含空格)。 输入 反序前的字符串 输出 反序后的字符串 样例 输入 abcd 输出 dcba 答案: C版本1:(掌握&…

( 哈希表) 217. 存在重复元素 ——【Leetcode每日一题】

❓217. 存在重复元素 难度:简单 给你一个整数数组 nums 。如果任一值在数组中出现 至少两次 ,返回 true;如果数组中每个元素互不相同,返回 false 。 示例 1: 输入:nums [1,2,3,1] 输出:true…

冷链物流运转 3D 可视化监控,助力大数据实时监控

智慧物流是以信息化为依托并广泛应用物联网、人工智能、大数据、云计算等技术工具,在物流价值链上的 6 项基本环节(运输、仓储、包装、装卸搬运、流通加工、配送)实现系统感知和数据采集的现代综合智能型物流系统。随着冷链信息化、数字化发展…

【Linux】8、查看 Linux 主机运行状态、压缩和解压缩命令、Linux 的环境变量

目录 一、查看 Linux 系统资源占用二、硬盘信息监控三、网络监控命令四、Linux 文件上传和下载命令五、压缩和解压(1) 压缩格式(2) tar 命令 六、Linux 的环境变量 一、查看 Linux 系统资源占用 ✒️ 可通过 top 命令查看系统的 CPU、内存的使用情况(类似 Windows …

AutoGPT安装教程

最近安装AutoGPT时遇到了一些问题,写下这篇文章记录一下 1 下载AutoGPT AutoGPT链接:https://github.com/Significant-Gravitas/Auto-GPT/tree/v0.2.2 下载AutoGPT 推荐下载stable 版本 2 申请openai 的api key 获取api的key,这里就不介…