DAC实验(DAC 输出三角波实验)(DAC 输出正弦波实验)

DAC 输出三角波实验

本实验我们来学习使用如何让 DAC 输出三角波,DAC 初始化部分还是用 DAC 输出实验 的,所以做本实验的前提是先学习 DAC 输出实验。

使用 DAC 输出三角波,通过 KEY0/KEY1 两个按键,控制 DAC1 的通道 1 输出两种三角 波,需要通过示波器接 PA4 进行观察。LED0 闪烁,提示程序运行。

我们只需要把示波器的探头接到 DAC1 通道 1(PA4)引脚,就可以在示波器上显示 DAC 输出的波形。 

#include "./BSP/DAC/dac.h"
#include "./SYSTEM/delay/delay.h"

DAC_HandleTypeDef g_dac_handle;

/* DAC初始化函数 */
void dac_init(void)
{
    DAC_ChannelConfTypeDef dac_ch_conf = {0};
    
    g_dac_handle.Instance = DAC;
    HAL_DAC_Init(&g_dac_handle);/* 初始化 DAC */
    
    dac_ch_conf.DAC_Trigger = DAC_TRIGGER_NONE;/* 不使用触发功能,(自动模式) */
    dac_ch_conf.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE;/* DAC1 输出缓冲关闭 */
    HAL_DAC_ConfigChannel(&g_dac_handle, &dac_ch_conf, DAC_CHANNEL_1);
    
    HAL_DAC_Start(&g_dac_handle, DAC_CHANNEL_1);/* 开启 DAC 通道 1 */
}

/* DAC MSP底层初始化函数 */
void HAL_DAC_MspInit(DAC_HandleTypeDef *hdac)
{
    if(hdac->Instance == DAC)
    {
        GPIO_InitTypeDef gpio_init_struct = {0};
        
        __HAL_RCC_DAC_CLK_ENABLE();/* 使能 DAC1 的时钟 */
        __HAL_RCC_GPIOA_CLK_ENABLE();;/* 使能 DAC OUT1/2 的 IO 口时钟(都在 PA 口,PA4/PA5) */
        
        gpio_init_struct.Pin = GPIO_PIN_4;
        gpio_init_struct.Mode = GPIO_MODE_ANALOG;
        HAL_GPIO_Init(GPIOA, &gpio_init_struct);
    }
}

/**
 * @brief       设置DAC_OUT1输出三角波
 *   @note      输出频率 ≈ 1000 / (dt * samples) Khz, 不过在dt较小的时候,比如小于5us时, 由于delay_us
 *              本身就不准了(调用函数,计算等都需要时间,延时很小的时候,这些时间会影响到延时), 频率会偏小.
 * 
 * @param       maxval : 最大值(0 < maxval < 4096), (maxval + 1)必须大于等于samples/2
 * @param       dt     : 每个采样点的延时时间(单位: us)
 * @param       samples: 采样点的个数, samples必须小于等于(maxval + 1) * 2 , 且maxval不能等于0
 * @param       n      : 输出波形个数,0~65535
 *
 * @retval      无
 */
void dac_triangular_wave(uint16_t maxval, uint16_t dt, uint16_t samples, uint16_t n)
{
    uint16_t i, j;
    float incval;                           /* 递增量 */
    float Curval;                           /* 当前值 */
    
    if((maxval + 1) <= samples)return ;     /* 数据不合法 */
        
    incval = (maxval + 1) / (samples / 2);  /* 计算递增量 */
    
    for(j = 0; j < n; j++)
    {
        Curval = 0;
        HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);    /* 先输出0 */
        for(i = 0; i < (samples / 2); i++)  /* 输出上升沿 */
        {
            Curval  +=  incval;             /* 新的输出值 */
            HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);
            delay_us(dt);
        }
        for(i = 0; i < (samples / 2); i++)  /* 输出下降沿 */
        {
            Curval  -=  incval;             /* 新的输出值 */
            HAL_DAC_SetValue(&g_dac_handle, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);
            delay_us(dt);
        }
    }
}

该函数用于设置 DAC 通道 1 输出三角波,输出频率 ≈ 1000 / (dt * samples) Khz,形参含 义在源码已经有详细注释。该函数中,我们使用 HAL_DAC_SetValue 函数来设置 DAC 的输出 值,这样得到的三角波在示波器上可以看到。如果有跳动现象(不平稳),是正常的,因为调用 函数,计算等都需要时间,这样就会导致输出的波形是不太稳定的。越高性能的 MCU,得到的 波形会越稳定。而且用 HAL 库函数操作效率没有直接操作寄存器高,所以可以像寄存器版本实 验一样,直接操作 DHR12R1 寄存器,得到的波形会相对稳定些。

由于使用 HAL 库的函数,CPU 花费的时间会更长(因为指令变多了),在时间精度要求比 较高的应用,就不适合用 HAL 库函数来操作了,这一点希望大家明白。所以学 STM32 不是说 只要会 HAL 库就可以了,对寄存器也是需要有一定的理解,最好是熟悉。这里用 HAL 库操作 只是为了演示怎么使用 HAL 库的相关函数。

#include "./SYSTEM/sys/sys.h"
#include "./SYSTEM/usart/usart.h"
#include "./SYSTEM/delay/delay.h"
#include "./BSP/LED/led.h"
#include "./BSP/LCD/lcd.h"
#include "./BSP/ADC/adc.h"
#include "./BSP/DAC/dac.h"
#include "./BSP/KEY/key.h"

int main(void)
{
    uint8_t t = 0; 
    uint8_t key;
    
    HAL_Init();                         /* 初始化 HAL 库 */
    sys_stm32_clock_init(RCC_PLL_MUL9); /* 设置时钟, 72Mhz */
    delay_init(72);                     /* 延时初始化 */
    usart_init(115200);                 /* 传口初始化 */
    
    led_init();                         /* LED初始化 */
    lcd_init();                         /* LCD初始化 */
    adc_init();                         /* ADC初始化 */
    dac_init();                         /* DAC初始化 */
    key_init();                         /* KEY初始化 */
    
    lcd_show_string(30,  50, 200, 16, 16, "STM32", RED);
    lcd_show_string(30,  70, 200, 16, 16, "DAC Triangular WAVE TEST", RED);
    lcd_show_string(30,  90, 200, 16, 16, "ATOM@ALIENTEK", RED);
    lcd_show_string(30, 110, 200, 16, 16, "KEY0:Wave1  KEY1:Wave2", RED);
    lcd_show_string(30, 130, 200, 16, 16, "DAC None", BLUE); /* 提示无输出 */
    
    while(1)
    {
        t++;
        key = key_scan(0);                           /* 按键扫描 */

        if (key == KEY0_PRES)                        /* 高采样率 , 约1Khz波形 */
        {
            lcd_show_string(30, 130, 200, 16, 16, "DAC Wave1 ", BLUE);
            dac_triangular_wave(4095, 5, 2000, 100); /* 幅值4095, 采样点间隔5us, 2000个采样点, 100个波形 */
            lcd_show_string(30, 130, 200, 16, 16, "DAC None  ", BLUE);
        }
        else if (key == KEY1_PRES)                   /* 低采样率 , 约1Khz波形 */
        {
            lcd_show_string(30, 130, 200, 16, 16, "DAC Wave2 ", BLUE);
            dac_triangular_wave(4095, 500, 20, 100); /* 幅值4095, 采样点间隔500us, 20个采样点, 100个波形 */
            lcd_show_string(30, 130, 200, 16, 16, "DAC None  ", BLUE);
        }

        if (t == 10)                                 /* 定时时间到了 */
        {
            LED0_TOGGLE();                           /* LED0闪烁 */
            t = 0;
        }

        delay_ms(10);
    }
}

该部分代码功能是,按下 KEY0 后,DAC 输出三角波 1,按下 KEY1 后,DAC 输出三角波 2,将 dac_triangular_wave 的形参代入公式:输出频率 ≈ 1000 / (dt * samples) KHz,得到三角 波 1 和三角波 2 的频率都是 0.1KHz。

下载代码后,可以看到 LED0 不停的闪烁,提示程序已经在运行了。LCD 显示如图 33.3.4.1 所示:

没有按下任何按键之前,LCD 屏显示 DAC None,当按下 KEY0 后,DAC 输出三角波 1, LCD 屏显示 DAC Wave1 ,三角波 1 输出完成后 LCD 屏继续显示 DAC None,当按下 KEY1后,DAC 输出三角波 2,LCD 屏显示 DAC Wave2,三角波 2 输出完成后 LCD 屏继续显示 DAC None。

其中三角波 1 和三角波 2 在示波器的显示情况如下图所示:

由上面两副测试图可以知道,三角波 1 的频率是 64.5Hz,三角波 2 的频率是 99.5Hz。三角 波 2 基本接近我们算出来的结果 0.1KHz,三角波 1 有较大误差,在介绍 dac_triangular_wave 函 数时也说了原因,加上三角波 1 的采样率比较高,所以误差就会比较大。 

DAC 输出正弦波实验

本实验我们来学习使用如何让 DAC 输出正弦波。实验将用定时器 7 来触发 DAC 进行转换 输出正弦波,以 DMA 传输数据的方式。

使用 DAC 输出正弦波,通过 KEY0/KEY1 两个按键,控制 DAC1 的通道 1 输出两种正弦 波,需要通过示波器接 PA4 进行观察。LED0 闪烁,提示程序运行。

我们只需要把示波器的探头接到 DAC1 通道 1(PA4)引脚,就可以在示波器上显示 DAC 输出的波形。PA4 在 P7 已经引出,硬件连接如图 33.4.2.1 所示:

HAL库函数 

 代码

#include "./BSP/DAC/dac.h"

DMA_HandleTypeDef g_dma_dac_handle;
DAC_HandleTypeDef g_dac_dma_handle;

extern uint16_t g_dac_sin_buf[4096];           /* 发送数据缓冲区 */

/* DAC DMA输出波形初始化函数 */
void dac_dma_wave_init(void)
{
    DAC_ChannelConfTypeDef dac_ch_conf = {0};
    
    __HAL_RCC_DMA2_CLK_ENABLE();/* DMA2 时钟使能 */
    
    g_dma_dac_handle.Instance = DMA2_Channel3;/* 设置 DMA 通道 */
    g_dma_dac_handle.Init.Direction = DMA_MEMORY_TO_PERIPH;/* 从存储器到外设模式 */
    g_dma_dac_handle.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;/* 存储器数据长度:16 位 */
    g_dma_dac_handle.Init.MemInc = DMA_MINC_ENABLE;/* 存储器增量模式 */
    g_dma_dac_handle.Init.Mode = DMA_CIRCULAR;/* 循环模式 */
    g_dma_dac_handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;/* 外设数据长度:16 位 */
    g_dma_dac_handle.Init.PeriphInc = DMA_PINC_DISABLE;/* 外设非增量模式 */
    g_dma_dac_handle.Init.Priority = DMA_PRIORITY_HIGH;/* 优先级 */
    HAL_DMA_Init(&g_dma_dac_handle);/* 初始化 DMA */
    
    __HAL_LINKDMA(&g_dac_dma_handle, DMA_Handle1, g_dma_dac_handle);/* DMA 句柄与 DAC 句柄关联 */
    
    g_dac_dma_handle.Instance = DAC;
    HAL_DAC_Init(&g_dac_dma_handle);
    
    dac_ch_conf.DAC_Trigger = DAC_TRIGGER_T7_TRGO;/* 使用 TIM7 TRGO 事件触发 */
    dac_ch_conf.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE;/* DAC1 输出缓冲关闭 */
    HAL_DAC_ConfigChannel(&g_dac_dma_handle, &dac_ch_conf, DAC_CHANNEL_1);/* DAC 通道 1 配置 */
    
    /* 配置 DMA 传输参数 */
    HAL_DMA_Start(&g_dma_dac_handle, (uint32_t)g_dac_sin_buf, (uint32_t)&DAC->DHR12R1, 0);
}

/* DAC MSP底层初始化函数 */
void HAL_DAC_MspInit(DAC_HandleTypeDef *hdac)
{
    if(hdac->Instance == DAC)
    {
        GPIO_InitTypeDef gpio_init_struct = {0};
        
        __HAL_RCC_DAC_CLK_ENABLE();/* 使能 DAC1 的时钟 */
        __HAL_RCC_GPIOA_CLK_ENABLE();/* DAC 通道引脚端口时钟使能 */
        
        /* STM32 单片机, 总是 PA4=DAC1_OUT1, PA5=DAC1_OUT2 */
        gpio_init_struct.Pin = GPIO_PIN_4;
        gpio_init_struct.Mode = GPIO_MODE_ANALOG;/* 模拟 */
        HAL_GPIO_Init(GPIOA, &gpio_init_struct);
    }
}

void dac_dma_wave_enable(uint16_t cndtr, uint16_t arr, uint16_t psc)
{
    TIM_HandleTypeDef tim7_handle = {0};
    TIM_MasterConfigTypeDef tim7_master_config = {0};
    
    __HAL_RCC_TIM7_CLK_ENABLE();/* TIM7 时钟使能 */
    
    tim7_handle.Instance = TIM7;/* 选择定时器 7 */
    tim7_handle.Init.Prescaler = psc;/* 预分频 */
    tim7_handle.Init.Period = arr;/* 自动装载值 */
    tim7_handle.Init.CounterMode = TIM_COUNTERMODE_UP; /* 递增计数器 */
    HAL_TIM_Base_Init(&tim7_handle);
    
    tim7_master_config.MasterOutputTrigger = TIM_TRGO_UPDATE;/* 定时器更新事件用于触发 */
    tim7_master_config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
    HAL_TIMEx_MasterConfigSynchronization(&tim7_handle, &tim7_master_config);/* 配置定时器 7 的更新事件触发 DAC 转换 */
    
    HAL_TIM_Base_Start(&tim7_handle);/* 启动定时器 7 */
    
    HAL_DAC_Stop_DMA(&g_dac_dma_handle, DAC_CHANNEL_1);/* 先停止之前的传输 */
    HAL_DAC_Start_DMA(&g_dac_dma_handle, DAC_CHANNEL_1, (uint32_t *)g_dac_sin_buf, cndtr, DAC_ALIGN_12B_R);
}

该函数用于初始化 DAC 用 DMA 的方式输出正弦波。本函数用到的 API 函数起前面都介 绍过,请结合前面介绍过的相关内容来理解源码。这里值得注意的是我们是采用定时器 7 触发 DAC 进行转换输出的。

该函数用于使能波形输出,利用定时器 7 的更新事件来触发 DAC 转换输出。使能定时器 7 的时钟后,调用 HAL_TIMEx_MasterConfigSynchronization 函数配置 TIM7 选择更新事件作为触 发输出 (TRGO),然后调用 HAL_DAC_Stop_DMA 函数停止 DAC 转换以及 DMA 传输,最后 再调用 HAL_DAC_Start_DMA 函数重新配置并启动 DAC 和 DMA。

#include "./SYSTEM/sys/sys.h"
#include "./SYSTEM/usart/usart.h"
#include "./SYSTEM/delay/delay.h"
#include "./BSP/LED/led.h"
#include "./BSP/LCD/lcd.h"
#include "./BSP/ADC/adc.h"
#include "./BSP/DAC/dac.h"
#include "./BSP/KEY/key.h"
#include "math.h"

uint16_t g_dac_sin_buf[4096];           /* 发送数据缓冲区 */

/**
 * @brief       产生正弦波函序列
 *   @note      需保证: maxval > samples/2
 *
 * @param       maxval : 最大值(0 < maxval < 2048)
 * @param       samples: 采样点的个数
 *
 * @retval      无
 */
void dac_creat_sin_buf(uint16_t maxval, uint16_t samples)
{
    uint8_t i;
    float inc = (2 * 3.1415962) / samples; /* 计算增量(一个周期DAC_SIN_BUF个点)*/
    float outdata = 0;

    for (i = 0; i < samples; i++)
    {
        outdata = maxval * (1 + sin(inc * i)); /* 计算以dots个点为周期的每个点的值,放大maxval倍,并偏移到正数区域 */
        if (outdata > 4095)
            outdata = 4095; /* 上限限定 */
        //printf("%f\r\n",outdata);
        g_dac_sin_buf[i] = outdata;
    }
}

int main(void)
{
    uint8_t t = 0; 
    uint8_t key;
    
    HAL_Init();                         /* 初始化 HAL 库 */
    sys_stm32_clock_init(RCC_PLL_MUL9); /* 设置时钟, 72Mhz */
    delay_init(72);                     /* 延时初始化 */
    usart_init(115200);                 /* 传口初始化 */
    
    led_init();                         /* LED初始化 */
    lcd_init();                         /* LCD初始化 */
    key_init();                         /* KEY初始化 */
    
    /* 初始化DAC通道1 DMA波形输出 */
    dac_dma_wave_init();
    
    lcd_show_string(30,  50, 200, 16, 16, "STM32", RED);
    lcd_show_string(30,  70, 200, 16, 16, "DAC DMA Sine WAVE TEST", RED);
    lcd_show_string(30,  90, 200, 16, 16, "ATOM@ALIENTEK", RED);
    lcd_show_string(30, 110, 200, 16, 16, "KEY0:3Khz  KEY1:30Khz", RED);
    
    dac_creat_sin_buf(2048, 100);
    dac_dma_wave_enable(100, 10 - 1, 72 - 1);/* 100Khz触发频率, 100个点, 得到1Khz的正弦波 */
    
    while(1)
    {
        t++;
        key = key_scan(0);                           /* 按键扫描 */
        
        if (key == KEY0_PRES)                               /* 高采样率 , 约1Khz波形 */
        {
            dac_creat_sin_buf(2048, 100);
            dac_dma_wave_enable(100, 10 - 1, 24 - 1);       /* 300Khz触发频率, 100个点, 得到最高3KHz的正弦波. */
        }
        else if (key == KEY1_PRES)                          /* 低采样率 , 约1Khz波形 */
        {
            dac_creat_sin_buf(2048, 10);
            dac_dma_wave_enable(10, 10 - 1, 24 - 1);        /* 300Khz触发频率, 10个点, 可以得到最高30KHz的正弦波. */
        }

        if (t == 40)        /* 定时时间到了 */
        {
            LED0_TOGGLE();  /* LED0闪烁 */
            t = 0;
        }
        delay_ms(5);
    }
}

dac_dma_wave_init 函数初始化 DAC 通道 1,并指定 DMA 搬运的数据的开始地址和目标 地址。dac_creat_sin_buf 函数用于产生正弦波序列,并保存在 g_dac_sin_buf 数组中,供给 DAC 转换。在进入wilhe(1)循环之前,dac_dma_wave_enable函数默认配置DAC的采样点个数时100, 并配置定时器 7 的溢出频率为 100KHz。这样就可以输出 1KHz 的正弦波。下面给大家解释一下 为什么是输出 1KHz 的正弦波?

定时器 7 的溢出频率为 100KHz,不记得怎么计算的朋友,请回顾基本定时器的相关内容, 这里直接把公式列出:Tout= ((arr+1)*(psc+1))/Tclk

看到 dac_dma_wave_enable(100, 10 - 1, 72 - 1);这个语句,第二个形参是自动重装载值,第 三个形参是分频系数,那么代入公式,可得:Tout= ((arr+1)*(psc+1))/Tclk= ((9+1)*(71+1))/ 72000000= 0.00001s得到定时器的更新事件周期是 0.00001 秒,即更新事件频率为 100KHz,也就得到 DAC 输 出触发频率为 100KHz。再结合总一个正弦波共有 100 个采样点,就可以得到正弦波的频率为 100KHz/100 = 1KHz。

知道了正弦波的频率怎么来的,下面代码中,按下按键 KEY0,得到 3KHz 的正弦波,按下 按键 KEY1,得到 30KHz 的正弦波,计算方法都一样的。

实验现象

没有按下任何按键之前,默认输出 1KHz(100 个采样点)的正弦波,如下图所示:

当按下 KEY0 后,DAC 输出 3KHz(100 个采样点)的正弦波,如下图所示: 当按下 KEY1 后,DAC 输出 30KHz(10 个采样点)的正弦波,如下图所示:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/155296.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

文旅媒体有哪些?如何邀请到现场报道?

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 中国文旅产业在近年来得到了持续而快速的发展。从产业端看&#xff0c;中国文旅产业呈现出新的发展趋势&#xff0c;其中“文旅”向“文旅”转变成为显著特点。通过产业升级和空间构建&a…

Shell编程基础(3)- Shell的位置参数

Shell编程基础&#xff08;3&#xff09;- Shell的位置参数 Shell Scripting Essentials (3) – Locative Parameters of Shell Scripting 前文介绍过shell变量。当声明shell变量时&#xff0c;只需要在代码行写出变量名称即可;在输入行用read命令要求用户输入&#xff0c;在…

Day48 力扣动态规划 : 647. 回文子串 |516.最长回文子序列 |动态规划总结篇

Day48 力扣动态规划 : 647. 回文子串 &#xff5c;516.最长回文子序列 &#xff5c;动态规划总结篇 647. 回文子串第一印象看完题解的思路dp递推公式初始化递归顺序 实现中的困难感悟代码 516.最长回文子序列第一印象我的尝试遇到的问题 看完题解的思路dp递推公式初始化 实现中…

设计基于STM32F103C8T6微控制器的巡线小车

巡线小车是一种能够在一条预定线追踪路径的小车&#xff0c;广泛应用于工业自动化、物流仓储、智能家居等领域。本设计将使用STM32F103C8T6微控制器来实现一个基础的巡线小车。 硬件组成&#xff1a;1. STM32F103C8T6微控制器开发板&#xff1a;作为巡线小车的核心控制器&…

双剑合璧:基于Elasticsearch的两路召回语义检索系统,实现关键字与语义的高效精准匹配

搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源) 专栏详细介绍:搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术…

NewStarCTF2023 Reverse Week3 EzDLL WP

分析 这里调用了z3h.dll中的encrypt函数。 用ida64载入z3h.dll 直接搜索encrypt 找到了一个XTEA加密。接着回去找key和密文。 发现key 这里用了个调试状态来判断是否正确&#xff0c;v71&#xff0c;要v7&#xff1d;1才会输出Right&#xff0c;即程序要处于飞调试状态。 可…

asp.net core EF Sqlserver

一、EF CORE的使用 1、使用NuGet来安装EF CORE 使用程序包管理器控制台&#xff0c;进行命令安装 //安装 Microsoft.EntityFrameworkCoreInstall-Package Microsoft.EntityFrameworkCore //安装 Microsoft.EntityFrameworkCore.SqlServer Install-Package Microsoft.EntityF…

Java智慧工地云SaaS源码,AI服务器、智能硬件

智慧工地智能硬件 一、自动喷淋控制 当扬尘监测值超过在智慧工地系统中设定的闽值后自动喷淋控制系统通过接收系统发出的开关指令&#xff0c;实现自动、及时喷淋降尘&#xff0c;同时系统可设置自动喷淋时间段&#xff0c;每天定时喷淋&#xff0c;避免环境污染。 二、智能电…

采用Nexus搭建Maven私服

采用Nexus搭建Maven私服 1.采用docker安装 1.创建数据目录挂载的目录&#xff1a; /usr/local/springcloud_1113/nexus3/nexus-data2.查询并拉取镜像docker search nexus3docker pull sonatype/nexus33.查看拉取的镜像docker images4.创建docker容器&#xff1a;可能出现启动…

【vue】下载导出excel

下载导出excel 首先使用的tdesign框架&#xff0c;要导出后端返回的数据流excel 遇见的问题 下载的文件&#xff0c;里边的内容是undefined 观察报错 一看就知道并不是后端的报错&#xff0c;后端不可能是undefined 在强烈的好奇心驱动下&#xff0c;看了下接口&#xff0…

Docker安装MinIO遇到的(汇总——持续更新中)

文章目录 Docker安装MinIO遇到的坑前言问题1&#xff1a;执行docker run报错Error response from daemon问题2&#xff1a;启动MinIO容器浏览器无法访问问题3&#xff1a;上传文件报错InvalidResponseException问题4&#xff1a;上传文件报错Connection refused最终的启动指令问…

【Electron】electron-builder打包失败问题记录

文章目录 yarn下载的包不支持require()winCodeSign-2.6.0.7z下载失败nsis-3.0.4.1.7z下载失败待补充... yarn下载的包不支持require() 报错内容&#xff1a; var stringWidth require(string-width)^ Error [ERR_REQUIRE_ESM]: require() of ES Module /stuff/node_modules/…

轮播图(多个一起轮播)

效果图 class MainActivity : Activity(), Runnable {private lateinit var viewPager: ViewPagerprivate lateinit var bannerAdapter: BannerAdapterprivate val images ArrayList<Int>() // 存储图片资源的列表private val handler Handler() // 用于定时发送消息…

Linux磁盘分区快速上手(讲解详细)

一、磁盘分区 在Linux中&#xff0c;磁盘是通过分区来使用的。分区是将一个硬盘划分成几个逻辑部分来使用&#xff0c;在每个分区中可以存储不同的文件系统。因此&#xff0c;在挂载磁盘之前&#xff0c;我们需要先对磁盘进行分区。磁盘分区的过程可以通过命令行工具或图形界面…

Unity中Shader矩阵的转置矩阵

文章目录 前言一、转置的表示二、转置矩阵三、转置矩阵的总结1、(A^T^)^T^ A2、(A B)^T^ A^T^ B^T^3、(kA)^T^ kA^T^ (k为实数)4、(AB)^T^ B^T^A^T^5、如果 A A^T^ 则称A为对称矩阵6、如果 AA^T^ I(单位矩阵)&#xff0c;则称 A 为正交矩阵&#xff0c;同时 A^T^ A^-1…

OpenCV中的像素重映射原理及实战分析

引言 映射是个数学术语&#xff0c;指两个元素的集之间元素相互“对应”的关系&#xff0c;为名词。映射&#xff0c;或者射影&#xff0c;在数学及相关的领域经常等同于函数。 基于此&#xff0c;部分映射就相当于部分函数&#xff0c;而完全映射相当于完全函数。 说的简单点…

MySQL 1、初识数据库

一、什么是数据库&#xff1f; 以特定的格式保存好的文件&#xff0c;我们就叫做数据库。 提供较为便捷的数据的存取服务的软件集合、解决方案&#xff0c;我们就叫它数据库。 存储数据用文件就可以了&#xff0c;为什么还要弄个数据库。 文件或数据库都可以存储数据&#…

react+video.js h5自定义视频暂停图标

目录 参考网址 效果图&#xff0c;暂停时显示暂停图标&#xff0c;播放时隐藏暂停图标 代码说明&#xff0c;代码传入url后&#xff0c;可直接复制使用 VideoPausedIcon.ts 组件 VideoCom.tsx Video.module.less 参考网址 在Video.js播放器中定制自己的组件 - acgtofe 效…

nodejs+vue教室管理系统的设计与实现-微信小程序-安卓-python-PHP-计算机毕业设计

用户 用户管理&#xff1a;查看&#xff0c;修改自己的个人信息 教室预约&#xff1a;可以预约今天明天的教室&#xff0c;按着时间段预约&#xff08;可多选&#xff09;&#xff0c;如果当前时间超过预约时间段不能预约该时间段的教室 预约教室的时候要有个预约用途&#xff…

所见即所得的动画效果:Animate.css

我们可以在集成Animate.css来改善界面的用户体验&#xff0c;省掉大量手写css动画的时间。 官网&#xff1a;Animate.css 使用 1、安装依赖 npm install animate.css --save2、引入依赖 import animate.css;3、在项目中使用 在class类名上animate__animated是必须的&#x…