卷积神经网络(CNN)mnist手写数字分类识别的实现

文章目录

  • 前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
      • 我的环境:
    • 2. 导入数据
    • 3.归一化
    • 4.可视化
    • 5.调整图片格式
  • 二、构建CNN网络模型
  • 三、编译模型
  • 四、训练模型
  • 五、预测
  • 六、知识点详解
    • 1. MNIST手写数字数据集介绍
    • 2. 神经网络程序说明
    • 3. 网络结构说明

前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

2. 导入数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

3.归一化

# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

4.可视化

plt.figure(figsize=(20,10))
for i in range(20):
    plt.subplot(5,10,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(train_labels[i])
plt.show()

在这里插入图片描述

5.调整图片格式

#调整数据到我们需要的格式
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

# train_images, test_images = train_images / 255.0, test_images / 255.0

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

二、构建CNN网络模型

model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10)
])

model.summary()
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 conv2d (Conv2D)             (None, 26, 26, 32)        320       
                                                                 
 max_pooling2d (MaxPooling2D  (None, 13, 13, 32)       0         
 )                                                               
                                                                 
 conv2d_1 (Conv2D)           (None, 11, 11, 64)        18496     
                                                                 
 max_pooling2d_1 (MaxPooling  (None, 5, 5, 64)         0         
 2D)                                                             
                                                                 
 flatten (Flatten)           (None, 1600)              0         
                                                                 
 dense (Dense)               (None, 64)                102464    
                                                                 
 dense_1 (Dense)             (None, 10)                650       
                                                                 
=================================================================
Total params: 121,930
Trainable params: 121,930
Non-trainable params: 0
_________________________________________________________________

三、编译模型

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

四、训练模型

history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))
Epoch 1/10
1875/1875 [==============================] - 15s 8ms/step - loss: 0.1429 - accuracy: 0.9562 - val_loss: 0.0550 - val_accuracy: 0.9803
Epoch 2/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0460 - accuracy: 0.9856 - val_loss: 0.0352 - val_accuracy: 0.9883
Epoch 3/10
1875/1875 [==============================] - 13s 7ms/step - loss: 0.0312 - accuracy: 0.9904 - val_loss: 0.0371 - val_accuracy: 0.9880
Epoch 4/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0234 - accuracy: 0.9925 - val_loss: 0.0330 - val_accuracy: 0.9900
Epoch 5/10
1875/1875 [==============================] - 14s 8ms/step - loss: 0.0176 - accuracy: 0.9944 - val_loss: 0.0311 - val_accuracy: 0.9904
Epoch 6/10
1875/1875 [==============================] - 16s 9ms/step - loss: 0.0136 - accuracy: 0.9954 - val_loss: 0.0300 - val_accuracy: 0.9911
Epoch 7/10
1875/1875 [==============================] - 14s 8ms/step - loss: 0.0109 - accuracy: 0.9964 - val_loss: 0.0328 - val_accuracy: 0.9909
Epoch 8/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0097 - accuracy: 0.9969 - val_loss: 0.0340 - val_accuracy: 0.9903
Epoch 9/10
1875/1875 [==============================] - 15s 8ms/step - loss: 0.0078 - accuracy: 0.9974 - val_loss: 0.0499 - val_accuracy: 0.9879
Epoch 10/10
1875/1875 [==============================] - 13s 7ms/step - loss: 0.0078 - accuracy: 0.9976 - val_loss: 0.0350 - val_accuracy: 0.9902

五、预测

通过下面的网络结构我们可以简单理解为,输入一张图片,将会得到一组数,这组代表这张图片上的数字为0~9中每一个数字的几率,out数字越大可能性越大。
在这里插入图片描述

plt.imshow(test_images[1])

在这里插入图片描述

输出测试集中第一张图片的预测结果

pre = model.predict(test_images)
pre[1]
313/313 [==============================] - 1s 2ms/step
array([  3.3290668 ,   0.29532072,  21.943724  ,  -7.09336   ,
       -15.3133955 , -28.765621  ,  -1.8459738 ,  -5.761892  ,
        -2.966585  , -19.222878  ], dtype=float32)

六、知识点详解

本文使用的是最简单的CNN模型- -LeNet-5,如果是第一次接触深度学习的话,可以先试着把代码跑通,然后再尝试去理解其中的代码。

1. MNIST手写数字数据集介绍

MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:http://yann.lecun.com/exdb/mnist/ (下载后需解压)。我们一般会采用(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()这行代码直接调用,这样就比较简单

MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28,数据集样本如下:

在这里插入图片描述

如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784的向量。因此我们可以把训练集看成是一个[60000,784]的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1之间。

在这里插入图片描述

2. 神经网络程序说明

神经网络程序可以简单概括如下:
在这里插入图片描述

3. 网络结构说明

在这里插入图片描述

各层的作用

  • 输入层:用于将数据输入到训练网络
  • 卷积层:使用卷积核提取图片特征
  • 池化层:进行下采样,用更高层的抽象表示图像特征
  • Flatten层:将多维的输入一维化,常用在卷积层到全连接层的过渡
  • 全连接层:起到“特征提取器”的作用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/154542.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python接口自动化-参数关联

前言 我们用自动化发帖之后,要想接着对这篇帖子操作,那就需要用参数关联了,发帖之后会有一个帖子的id,获取到这个id,继续操作传这个帖子id就可以了 (博客园的登录机制已经变了,不能用账号和密…

静态共享代理和静态独享有哪些区别?怎么选择?

在软件开发中,静态共享代理(Static Proxy)和静态独享(Monostatic)是两种常见的软件设计模式。这两种模式在实现方式、使用场景以及优缺点上存在一定的差异,下面将详细介绍它们的区别以及如何进行选择。 一、…

Python长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析

植被是陆地生态系统中最重要的组分之一,也是对气候变化最敏感的组分,其在全球变化过程中起着重要作用,能够指示自然环境中的大气、水、土壤等成分的变化,其年际和季节性变化可以作为地球气候变化的重要指标。此外,由于…

【你哥电力电子】从耦合电感到变压器

从耦合电感到变压器 2023年7月12日 dk 文章目录 从耦合电感到变压器1. 耦合电感1.1 一个等效1.2 自感、互感与漏感1.3 耦合系数2. 变压器3. 其他模型的推导方法3.1 T型等效电路3.2 其他等效电路4. 小结下链1. 耦合电感 1.1 一个等效 通电导线的周围会产生磁场,磁场可以通过…

开源微信小程序源码/校园综合服务平台小程序源码+数据库/包括校园跑腿 快递代取 打印服务等功能

源码简介: 校园综合服务小程序源码,它是基于微信小程序开发,包括快递代取 打印服务 校园跑腿 代替服务 上门维修和其他帮助等功能。它是开源微信小程序源码。 校园综合服务小程序开源源码是一款功能强大的小程序,可用于搭建校园…

GPON、XG(S)-PON基础

前言 本文主要介绍了GPON、XG(S)-PON中数据复用技术、协议、关键技术、组网保护等内容,希望对你有帮助。 一:GPON数据复用技术 下行波长:1490nm,上行波长:1310nm 1:单线双向传输(WDM技术&am…

Docker启动SRS流媒体服务器

一、安装Docker 1.1、下载windows桌面版Windows 1.2、配置镜像 镜像加速器镜像加速器地址Docker 中国官方镜像https://registry.docker-cn.comDaoCloud 镜像站http://f1361db2.m.daocloud.ioAzure 中国镜像https://dockerhub.azk8s.cn科大镜像站https://docker.mirrors.ustc…

STM32中断看这一篇就够了

🙌秋名山码民的主页 😂oi退役选手,Java、大数据、单片机、IoT均有所涉猎,热爱技术,技术无罪 🎉欢迎关注🔎点赞👍收藏⭐️留言📝 获取源码,添加WX 目录 1. 前言…

使用Python进行可视化

字不如表,表不如图 在使用python进行数据分析的过程中,绘制图表常常是理解数据最为关键的一步; Python提供了5大可视化库: Matplotlib:是Python可视化库中的泰斗,公认的可视化工具,可以方便地…

工厂是否需要单独的设备管理部门

设备是工厂生产过程中不可或缺的重要资源,其正常运行和有效管理对于工厂的生产效率和质量至关重要。为了确保设备的良好状态和高效运行,许多工厂选择设立专门的设备管理部门。本文将探讨设备管理部门的职责、与生产部门下的点检维保团队的区别&#xff0…

kickstarter数据采集

搜索界面字段如下: 详情界面字段如下: 评论页面采集: 需要的可以找我沟通

Linux网络应用层协议之http/https

文章目录 目录 一、http协议 1.URL 2.http协议格式 3.http的方法 4.http的状态码 5.http常见header 6.实现一个http服务器 二、https协议 1.加密 2.为什么要加密 3.常见的加密方式 对称加密 非对称加密 4.https的工作过程探究 方案1 只使用对称加密 方案2 只使…

JS 读取excel文件内容 和 将json数据导出excel文件

一、实现将json数据导出为excel文件 1、通过原生js实现 核心方法: function JSONToExcelConvertor(JSONData, FileName, title, filter) {if (!JSONData)return;//转化json为objectvar arrData typeof JSONData ! object ? JSON.parse(JSONData) : JSONData;va…

《C++避坑神器·二十一》回调函数使用

1、不涉及类的回调函数使用: 注意:提供给别人使用的就是注册回调函数的那个接口 void registHeightcallback(CallbackFun callback, void* contex) 2、涉及类的回调函数使用: 一般提供给别人使用的都是注册回调函数的接口 在类中定义的回调函…

如何实时提取微信群收到的二维码图片?

10-4 在有些工作中,需要实时提取在微信中收到的二维码图片,比如微信里有一百个群,怎么才能知道这些群里发了二维码出来,要实现这样的功能,微信本身并不提供,但是可以通过一些其它技巧完成。 大概的原理是…

向量以及矩阵

0.前言 好了那我们新的征程也即将开始,那么在此呢我也先啰嗦两句,本篇文章介绍数学基础的部分,因为个人精力有限我不可能没一字一句都讲得非常清楚明白,像矩阵乘法之类的一些基础知识我都是默认你会了(还不会的同学推…

平均分(C++)

系列文章目录 进阶的卡莎C++_睡觉觉觉得的博客-CSDN博客数1的个数_睡觉觉觉得的博客-CSDN博客双精度浮点数的输入输出_睡觉觉觉得的博客-CSDN博客足球联赛积分_睡觉觉觉得的博客-CSDN博客大减价(一级)_睡觉觉觉得的博客-CSDN博客小写字母的判断_睡觉觉觉得的博客-CSDN博客纸币(…

【Synopsys Bug记录】Synopsys工具显示license过期

首先查找网络配置,打开终端,输入ifconfig,看是否有ens33 若没有ens33,则说明linux的网卡因为某些原因未启用,我们需要更改ifcfg-ens33文件; 输入指令 cd ./etc/sysconfig/network-scripts sudo vim ifcfg-…

leetcode每日一题-周复盘

前言 该系列文章用于我对一周中leetcode每日一题or其他不会的题的复盘总结。 一方面用于自己加深印象,另一方面也希望能对读者的算法能力有所帮助, 同时也希望能帮助同样坚持刷题的同学加深印象~ 该复盘对我来说比较容易的题我会复盘的比较粗糙&#…

SpringBoot 事务与AOP

目录 事务Spring事务管理 TransactionalSpring事务进阶-rollbackFor与propagation属性 AOP(面向切面编程)AOP入门案例实现-Aspect & AOP核心概念AOP进阶通知类型 Around、Before、After和PointCut抽取切入点表达式通知顺序 Order切入点表达式 execution(……)与annotation(…