如何在10亿级别用户中检查用户名是否存在?

题目

不知道大家有没有留意过,在使用一些app注册的时候,提示你用户名已经被占用了,需要更换一个,这是如何实现的呢?你可能想这不是很简单吗,去数据库里查一下有没有不就行了吗,那么假如用户数量很多,达到数亿级别呢,这又该如何是好?

数据库方案

这种方法会带来如下问题:

  • 性能问题,延迟高 。如果数据量很大,查询速度慢。另外,数据库查询涉及应用程序服务器和数据库服务器之间的网络通信。建立连接、发送查询和接收响应所需的时间也会导致延迟。
  • 数据库负载过高。频繁执行 SELECT 查询来检查用户名唯一性,每个查询需要数据库资源,包括CPU和I/O。
  • 可扩展性差。数据库对并发连接和资源有限制。如果注册率继续增长,数据库服务器可能难以处理数量增加的传入请求。垂直扩展数据库(向单个服务器添加更多资源)可能成本高昂并且可能有限制。

缓存方案

这个方案最大的问题就是内存占用过大,假如每个用户名需要大约 20 字节的内存。你想要存储10亿个用户名的话,就需要20G的内存。

总内存 = 每条记录的内存使用量 * 记录数 = 20 字节/记录 * 1,000,000,000 条记录 = 20,000,000,000 字节 = 20,000,000 KB = 20,000 MB = 20 GB

布隆过滤器方案

那究竟什么布隆过滤器呢?

布隆过滤器 (Bloom Filter)是一种数据结构 ,用于快速检查一个元素是否存在于一个大型数据集中,通常用于在某些情况下快速过滤掉不可能存在的元素,以减少后续更昂贵的查询操作。布隆过滤器的主要优点是它可以提供快速的查找和插入操作,并且在内存占用方面非常高效。

具体的实现原理和数据结构如下图所示:
在这里插入图片描述
布隆过滤器的核心思想是使用一个位数组(bit array)和一组哈希函数。

  • 位数组(Bit Array):布隆过滤器使用一个包含大量位的数组,通常初始化为全0。每个位可以存储两个值,通常是0或1。这些位被用来表示元素的存在或可能的存在。
  • 哈希函数(Hash Functions):布隆过滤器使用多个哈希函数,每个哈希函数可以将输入元素映射到位数组的一个或多个位置。这些哈希函数必须是独立且具有均匀分布特性。

那么具体是怎么做的呢?

  • 添加元素:如上图所示,当将字符串“xuyang”,“alvin”插入布隆过滤器时,通过多个哈希函数将元素映射到位数组的多个位置,然后将这些位置的位设置为1。
  • 查询元素:当要检查一个元素是否存在于布隆过滤器中时,通过相同的哈希函数将元素映射到位数组的相应位置,然后检查这些位置的位是否都为1。如果有任何一个位为0,那么可以确定元素不存在于数据集中。但如果所有位都是1,元素可能存在于数据集中,但也可能是误判。

本身redis支持布隆过滤器的数据结构,我们用代码简单实现了解一下:

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

public class BloomFilterExample {
    public static void main(String[] args) {
        JedisPoolConfig poolConfig = new JedisPoolConfig();
        JedisPool jedisPool = new JedisPool(poolConfig, "localhost", 6379);

        try (Jedis jedis = jedisPool.getResource()) {
            // 创建一个名为 "usernameFilter" 的布隆过滤器,需要指定预计的元素数量和期望的误差率
            jedis.bfCreate("usernameFilter", 10000000, 0.01);
            
            // 将用户名添加到布隆过滤器
            jedis.bfAdd("usernameFilter", "alvin");
            
            // 检查用户名是否已经存在
            boolean exists = jedis.bfExists("usernameFilter", "alvin");
            System.out.println("Username exists: " + exists);
        }
    }
}

在上述示例中,我们首先创建一个名为 “usernameFilter” 的布隆过滤器,然后使用 bfAdd 将用户名添加到布隆过滤器中。最后,使用 bfExists 检查用户名是否已经存在。

优点:

  • 节约内存空间 ,相比使用哈希表等数据结构,布隆过滤器通常需要更少的内存空间,因为它不存储实际元素,而只存储元素的哈希值。如果以 0.001误差概率存储 10 亿条记录,只需要 1.67 GB 内存,对比原来的20G,大大的减少了。
  • 高效的查找 , 布隆过滤器可以在常数时间内(O(1))快速查找一个元素是否存在于集合中,无需遍历整个集合。

缺点:

  • 误判率存在:布隆过滤器在判断元素是否存在时,有一定的误判率。这意味着在某些情况下,它可能会错误地报告元素存在,但不会错误地报告元素不存在。
  • 不能删除元素 :布隆过滤器通常不支持从集合中删除元素,因为删除一个元素会影响其他元素的哈希值,增加了误判率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/152135.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【人工智能实验】A*算法求解8数码问题 golang

人工智能经典问题八数码求解 实际上是将求解转为寻找最优节点的问题,算法流程如下: 求非0元素的逆序数的和,判断是否有解将开始状态放到节点集,并设置访问标识位为true从节点集中取出h(x)g(x)最小的节点判断取出的节点的状态是不…

Redis - 订阅发布替换 Etcd 解决方案

为了减轻项目的中间件臃肿,由于我们项目本身就应用了 Redis,正好 Redis 的也具备订阅发布监听的特性,正好应对 Etcd 的功能,所以本次给大家讲解如何使用 Redis 消息订阅发布来替代 Etcd 的解决方案。接下来,我们先看 R…

linux之shell

一、是什么 Shell是一个由c语言编写的应用程序,它是用户使用 Linux 的桥梁。Shell 既是一种命令语言,又是一种程序设计语言 它连接了用户和Linux内核,让用户能够更加高效、安全、低成本地使用 Linux 内核 其本身并不是内核的一部分&#x…

Java实现自定义windows右键菜单

要添加Java应用程序到Windows桌面的右键菜单,可以按照以下步骤操作: 创建一个新的.reg文件,并在文本编辑器中打开它。 添加以下代码到.reg文件中,将名称和路径替换为您的Java应用程序的名称和路径。 Windows Registry Editor V…

虚拟化热添加技术在数据备份上的应用

虚拟化中的热添加技术主要是指:无需停止或中断虚拟机的情况下,在线添加物理资源(如硬盘、内存、CPU、网卡等)的技术。热添加技术也是相比物理机一个非常巨大的优势,其使得资源分配变得更加灵活。 虚拟化中的热添加技术…

SOP作业指导书系统如何帮助厂家实现数字化转型

SOP(Standard Operating Procedure,标准操作程序)电子作业操作手册的应用对于厂家实现数字化转型起着至关重要的作用。本文将探讨SOP电子作业操作手册如何帮助厂家实现数字化转型的重要性和优势。 首先,SOP作业指导书可以提高生产…

idea菜单栏任务栏放缩比例修改

在编辑自定义VM选项中增加 -Dide.ui.scale0.8 参数 Help -> Edit Custom VM Options

这家提供数据闭环完整链路的企业,已拿下多家头部主机厂定点

“BEV感知数据闭环”已经成为新一代自动驾驶系统的核心架构。 进入2023年,小鹏、理想、阿维塔、智己、华为问界等汽车品牌正在全力推动从高速NOA到城区NOA的升级。在这一过程当中,如何利用高效的算力支撑、完善的算法模型、大量有效的数据形成闭环&…

Ubuntu部署OpenStack踩坑指南:还要看系统版本?

正文共:1515 字 12 图,预估阅读时间:2 分钟 到目前为止,我对OpenStack还不太了解,只知道OpenStack本身是一个云管理平台(什么是OpenStack?)。那作为云管理平台,我能想到最…

解决网络编程中的EOF违反协议问题:requests库与SSL错误案例分析

1. 问题背景 近期,一个用户在使用requests库进行网络编程时遭遇到了一个不寻常的问题,涉及SSL错误,并提示错误消息为SSLError(SSLEOFError(8, uEOF occurred in violation of protocol (_ssl.c:661)),))。该用户表示已经采取了多种方法来解决…

【深度学习实验】网络优化与正则化(五):数据预处理详解——标准化、归一化、白化、去除异常值、处理缺失值

文章目录 一、实验介绍二、实验环境1. 配置虚拟环境2. 库版本介绍 三、优化算法0. 导入必要的库1. 随机梯度下降SGD算法a. PyTorch中的SGD优化器b. 使用SGD优化器的前馈神经网络 2.随机梯度下降的改进方法a. 学习率调整b. 梯度估计修正 3. 梯度估计修正:动量法Momen…

【文件包含】phpmyadmin 文件包含(CVE-2014-8959)

1.1漏洞描述 漏洞编号CVE-2014-8959漏洞类型文件包含漏洞等级高危漏洞环境Windows漏洞名称phpmyadmin 文件包含(CVE-2014-8959) 描述: phpMyAdmin是一套开源的、基于Web的MySQL数据库管理工具。其index.php中存在一处文件包含逻辑,通过二次编…

通过maven命令手动上传jar私服Nexus

Nexus3在界面上传组件时报: Ext.JSON.decode(): Youre trying to decode an invalid JSON String: 查找了很多资料,都没有解决。有哪位大佬知道的评论告诉一下,万分感谢。 于是换成maven命令上传: mvn deploy:deploy-file -Dgr…

promise时效架构升级方案的实施及落地 | 京东物流技术团队

一、项目背景 为什么需要架构升级 promise时效包含两个子系统:内核时效计算系统(系统核心是时效计算)和组件化时效系统(系统核心是复杂业务处理以及多种时效业务聚合,承接结算下单黄金流程流量)&#xff…

Google codelab WebGPU入门教程源码<4> - 使用Uniform类型对象给着色器传数据(源码)

对应的教程文章: https://codelabs.developers.google.com/your-first-webgpu-app?hlzh-cn#5 对应的源码执行效果: 对应的教程源码: 此处源码和教程本身提供的部分代码可能存在一点差异。 class Color4 {r: number;g: number;b: number;a: number;constructor(pr 1.0, …

FactoryIO 分拣仿真博图实现

FC_LightSygnalization FC_Manual Forward Backward

虚幻C++ day5

角色状态的常见机制 创建角色状态设置到UI上 在MainPlayer.h中新建血量,最大血量,耐力,最大耐力,金币变量,作为角色的状态 //主角状态UPROPERTY(EditDefaultsOnly, BlueprintReadOnly, Category "Playe Stats&…

最新PS 2024 虎标正式版来啦,附带AI神经滤镜(支持win/mac)

软件简介 文件名称 PS2024 虎标正式版 支持系统 windows、Mac 获取方式 文章底部 分享形式 百度网盘 小伙伴们,下午好!今天给大家的是PS 2024 25.0虎标正式版。 PS 2024 25.0 正式版介绍 经历了多次Photoshop 2023 Beta 测试之后,今天…

01.智慧商城——项目介绍与初始化

智慧商城 - 授课大纲 接口文档:https://apifox.com/apidoc/shared-12ab6b18-adc2-444c-ad11-0e60f5693f66/doc-2221080 演示地址:http://cba.itlike.com/public/mweb/#/ 01. 项目功能演示 1.明确功能模块 启动准备好的代码,演示移动端面…

Mahony 滤波算法参数自动调节方法 11

Mahony 滤波算法参数自动调节方法 1. 基于无阻尼自由频率设计设置Kp、Ki参数[^1]2.基于时间常数设置Kp, Ki参数[^2][^3] 1. 基于无阻尼自由频率设计设置Kp、Ki参数1 2.基于时间常数设置Kp, Ki参数23 Gain-Scheduled Complementary Filter Design for a M…