Kafka快速入门

文章目录

  • Kafka快速入门
    • 1、相关概念介绍
    • 前言
      • 1.1 基本介绍
      • 1.2 常见消息队列的比较
      • 1.3 Kafka常见相关概念介绍
    • 2、安装Kafka
    • 3、初体验
      • 前期准备
      • 编码测试
      • 配置介绍
    • bug记录

Kafka快速入门

Beginner's Guide to Everything About Kafka - DZone

1、相关概念介绍

前言

在当今信息爆炸的时代,实时数据处理已经成为许多应用程序和系统不可或缺的一部分。Apache Kafka作为一个高吞吐量、低延迟的分布式消息队列系统,广泛应用于构建实时数据管道、流式处理应用等场景。无论是大数据分析、日志收集、监控告警还是在线机器学习模型等,Kafka都发挥着重要的作用。
本快速入门指南将带您进入Kafka的世界,探索其核心概念和基本操作。我们将从安装和配置开始,逐步介绍如何创建生产者和消费者,以及如何使用topic进行消息传递。通过这个入门指南,您将对Kafka有一个清晰的理解,并能够开始构建自己的实时数据流应用。
无需更多准备,让我们开始探索Kafka的奇妙世界吧!
在这里插入图片描述

1.1 基本介绍

  • Kafka是什么

    Kafka是一个开源的分布式消息中间件系统,用于处理大规模实时数据流。它是由LinkedIn公司开发的,后来成为Apache软件基金会的一个顶级项目。Kafka的主要目的是通过可靠地将消息传输到多个消费者,实现高吞吐量、低延迟的数据传输。

    简单来说,Kafka可以帮助不同的应用程序和系统之间高效地传输消息,支持实时数据流处理、日志存储、数据集成等应用场景。

    • Kafka相关文档:

      • 英文文档:https://kafka.apache.org
      • 中文文档:https://kafka.apachecn.org
    • Kafka中文文档:Kafka 中文文档 - ApacheCN

    • Github开源地址:https://github.com/apache/kafka

  • Kafka有哪些用

    说到Kafka的作用,就要说MQ的作用了,MQ有如下一些常见的作用:

    • 消息传输: Kafka可以在不同的应用程序和系统之间传输消息。生产者将消息发送到Kafka集群,然后消费者从Kafka中读取消息。这种解耦的方式使得系统能够更灵活地进行消息交换。
    • 实时数据流处理: Kafka可以处理大规模的实时数据流,例如日志、传感器数据、网站活动日志等。它允许应用程序实时地处理这些数据,进行分析、计算、监控等操作。
    • 日志存储: Kafka的消息被持久化存储在磁盘上,形成高可靠、高可用的日志系统。这些日志可以被用于数据恢复、审计、分析等用途。
    • 数据集成: Kafka可以连接不同的数据系统,将数据从一个系统传输到另一个系统,实现数据的集成与同步。这种特性对于构建分布式系统、数据仓库等非常有用。
    • 发布-订阅模型: Kafka采用发布-订阅模型,允许多个消费者同时订阅一个或多个主题(topics),并且每个消费者可以以自己的速度处理消息。

    但是Kafka不仅仅是作为MQ使用,MQ只是Kafka的其中一个主要作用,它还有以下一些作用:

    • 分布式文件系统:许多消息队列可以发布消息,除了消费消息之外还可以充当中间数据的存储系统。那么Kafka作为一个优秀的存储系统有什么不同呢?

      数据写入Kafka后被写到磁盘,并且进行备份以便容错。直到完全备份,Kafka才让生产者认为完成写入,即使写入失败Kafka也会确保继续写入Kafka使用磁盘结构,具有很好的扩展性—50kb和50TB的数据在server上表现一致。

      可以存储大量数据,并且可通过客户端控制它读取数据的位置,您可认为Kafka是一种高性能、低延迟、具备日志存储、备份和传播功能的分布式文件系统。

      PS:关于Kafka提交日志存储和备份设计的更多细节,可以阅读 这页 。

    • 流处理:Kafka 流处理不仅仅用来读写和存储流式数据,它最终的目的是为了能够进行实时的流处理。

      Kafka提供了流处理API,可以用来进行实时数据分析和处理。通过Kafka Streams或者其他流处理框架,可以实现对数据流的实时处理、转换、聚合等操作。

  • Kafka常见应用

    • 构造实时流数据管道,它可以在系统或应用之间可靠地获取数据。 (相当于message queue)
    • 构建实时流式应用程序,对这些流数据进行转换或者影响。 (就是流处理,通过kafka stream topic和topic之间内部进行变化)
  • Kafka四大核心API

    • The Producer API :允许一个应用程序发布一串流式的数据到一个或者多个Kafka topic。
    • The Consumer API :允许一个应用程序订阅一个或多个 topic ,并且对发布给他们的流式数据进行处理。
    • The Streams API :允许一个应用程序作为一个流处理器,消费一个或者多个topic产生的输入流,然后生产一个输出流到一个或多个topic中去,在输入输出流中进行有效的转换。
    • The Connector API :允许构建并运行可重用的生产者或者消费者,将Kafka topics连接到已存在的应用程序或者数据系统。比如,连接到一个关系型数据库,捕捉表(table)的所有变更内容。

    image-20231102160816177

  • Kafka的发展史

    1. 2011年: LinkedIn开发了Kafka,并将其作为开源项目提交到Apache软件基金会。在这一年,Kafka的第一个版本(0.7.0)发布。
    2. 2012年: Kafka 0.8.0版本发布,引入了新的特性,包括副本机制(Replication)和生产者确认(Producer Acknowledgements)等。这些特性增强了Kafka的可靠性和稳定性。
    3. 2013年: Kafka 0.8.1版本发布,引入了消费者位移存储在Kafka中的功能,这个特性使得Kafka可以跟踪消费者的位移信息,确保消费者可以从它们上次离开的地方继续消费消息。
    4. 2014年: Kafka 0.8.2版本发布,引入了Kafka Connect,这是一个用于连接Kafka与外部数据存储系统的框架。此外,0.8.2版本还引入了Kafka Streams,这是一个用于构建实时流处理应用程序的库。
    5. 2015年: Kafka 0.9.0版本发布,引入了新的消费者API,增加了对多订阅(multi-subscribe)和动态主题(dynamic topic subscriptions)的支持。这一版本还改进了Kafka的性能和稳定性。
    6. 2016年: Kafka 0.10.0版本发布,引入了重大的特性,包括Exactly-Once语义、消息时间戳、头部消息(header messages)等。这些特性使得Kafka更加强大和灵活。
    7. 2017年: Kafka 1.0.0版本发布,标志着Kafka的正式稳定版发布。该版本引入了KIP(Kafka Improvement Proposals)流程,用于管理和跟踪Kafka社区的改进提案。
    8. 之后的发展: Kafka持续迭代发展,引入了更多新特性,包括事务支持、KRaft模式(一种更加可靠的分布式复制模式)等。Kafka的社区也持续活跃,成为了一个非常受欢迎的消息中间件和流处理平台。
  • Kafka名字的由来

    Kafka的名字来自于捷克作家弗朗茨·卡夫卡(Franz Kafka),他是一位以奇幻和荒谬主题著称的作家。这个名字被选择,部分原因是为了体现Kafka的持久性和韧性,就像卡夫卡的作品一样。

  • Kafka的logo

    Kafka的Logo是一只飞翔的狐猴(Flying Squirrel)。这个Logo是由LinkedIn的设计团队创造的,象征着Kafka高效、快速的消息传递能力。

1.2 常见消息队列的比较

  • 市面上常见消息中间件的对比

    image-20231102153143477

    • ActiveMQ:
      • 特点: ActiveMQ是一个开源的JMS(Java Message Service)消息中间件,支持多种协议,包括AMQP、MQTT等。
      • 适用场景: Java生态系统中,特别是需要使用JMS标准的项目。
      • 优点: 成熟的项目,易于使用,社区活跃。
      • 缺点: 性能较差,相比较其他消息中间件,吞吐量相对较低。
    • RabbitMQ:
      • 特点: RabbitMQ是一个高度可靠、可扩展、开源的AMQP消息中间件。
      • 适用场景: 强调可靠性、消息传递的顺序、复杂路由等需求的项目。
      • 优点: 稳定可靠,支持多种消息协议,易于使用。
      • 缺点: 性能相对较低,复杂路由可能会影响性能。
    • RocketMQ:
      • 特点: RocketMQ是阿里巴巴开源的分布式消息中间件,具有高可用性、高可靠性和高吞吐量。
      • 适用场景: 适用于高吞吐量、大规模分布式系统。
      • 优点: 性能优越,支持多种消息传递模式,易于水平扩展。
      • 缺点: 社区相对较小,相比Kafka,知名度稍低。
    • Kafka:
      • 特点: Kafka是一个高吞吐量、持久化的分布式消息中间件,广泛用于大规模数据处理和实时流数据。
      • 适用场景: 大规模实时数据处理、日志收集、事件溯源等需求。
      • 优点: 高性能、持久性、可水平扩展,有大型社区支持。
      • 缺点: 配置和管理相对较复杂。

    如果你需要高吞吐量、持久性、适用于大规模实时数据处理的系统,Kafka是一个不错的选择。如果你在Java生态系统中,需要使用JMS标准,可以考虑ActiveMQ。如果你需要强调可靠性、消息传递的顺序等特性,RabbitMQ也是一个很好的选择。而如果你在阿里巴巴技术栈中,并且需要高可用性、高可靠性,RocketMQ是一个合适的选择。

    image-20231102155706615

1.3 Kafka常见相关概念介绍

image-20231104174754229

image-20231104175222490

  • 消息队列(MQ,Message Queue):是一种用于在分布式系统中传输消息的通信机制,Kafka是MQ的一种具体实现

  • 消息(Message):

  • 消息键(key):用于消息的分区和数据路由的关键属性。每条消息都可以有一个可选的 key,它用于确定将消息发送到哪个特定分区。Kafka 会使用分区器对 key 进行处理,并根据特定的规则确定将消息发送到哪个分区。(一般建议指定 key,因为可以根据 key快速定位到消息所在的分区,如果不指定 key,则消息会被 kafka 随机放到某一个分区)

  • (Stream):是一连串的事件记录,这些事件记录是按照时间顺序持续产生的

  • 分布式(Distributed):一种计算机系统或应用程序的设计和组织方式。正如其名分布,一个系统的一个服务或多个服务是分布(部署)在不同的节点(服务器)上的,以此充分提高系统的高可用性

  • 代理(Broker): Kafka集群由多个Broker组成,每个Broker是一个Kafka服务器节点。它负责存储消息,处理生产者发送的消息和消费者请求消息的动作。

  • 主题(Topic): 主题是消息的类别,Kafka消息根据主题进行分类。生产者将消息发布到一个或多个主题,而消费者则订阅一个或多个主题来接收消息。

  • 分区(Partition): 主题可以被分成多个分区,每个分区是一个有序的消息队列。分区允许主题的数据水平扩展,提高了消息处理的并发性。

    image-20231104175349200

  • 生产者(Producer): 生产者负责向Kafka的Broker发送消息。它将消息发布到一个或多个主题,然后由Broker负责将消息存储到相应的分区中。

  • 消费者(Consumer): 消费者订阅一个或多个主题,从Broker中拉取消息并进行处理。消费者可以以不同的方式进行消息的消费,包括消费一次(at most once)、至少消费一次(at least once)和精确一次(exactly once)。

  • 消费者组(Consumer Group): 消费者组是一组消费者的集合,它们共同消费一个主题的消息。每个分区只能被消费者组中的一个消费者消费,这样可以实现消息的负载均衡和高可用性。

    image-20231104175425255

    根据消息发送到消费者组数量的不同,可以分为两个不同的模型

    1. 所有的消费者都在一个组中,那么这就变成了queue模型
    2. 所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型
  • Zookeeper: Kafka使用Zookeeper来进行集群管理、元数据存储等任务。Zookeeper负责记录Broker的信息、分区的分配情况、消费者的偏移量等,确保Kafka集群的可靠性和稳定性。

    PS:Kafka和Zookeeper是强依赖关系,Kafka内部是基于Zookeeper保存节点数据的,所以安装Kafka一定要同时安装Zookeeper

  • 偏移量(Offset): 每条消息在分区中都有一个唯一的偏移量(偏移量类似于数组索引,后加入分区的消息offset值越大),用来表示消息在分区中的位置。消费者通过偏移量来追踪自己消费到哪条消息,以便实现断点续传。

  • 备份机制(Replication):Kafka 允许 Topic 的 Partition 拥有若干副本,你可以在 Server 端配置 Partition 的副本数量。当集群中的节点出现故障时,能自动进行故障转移,保证数据的可用性。

    Kafka副本分类两类,一类是领导者副本(Leader)副本,它负责处理读写请求;一类是追随者副本(Follower)副本,它负责复制 Leader 中的数据。两者的具体工作流程:当 Producer 发送消息到Kafka集群时,首先会将消息写入 Leader 副本的日志中,并等待 Leader 确认成功。一旦 Leader 确认成功,Producer 认为消息已经被持久化。同时,Leader 会将消息传播给所有 Follower 副本。Follower 副本会定期从 Leader 拉取数据进行复制,同步 Leader 的状态。如果 Leader 发生故障,某个 Follower 副本可以被选举为新的 Leader,确保持续提供服务。

    image-20231104180218000

    其中,追随者副本 Follower 也有两类,一类是同步副本(In-Sync Replica,简称 ISR),它负责同步备份 Leader 副本中的数据;一类是落后副本(Out-of-Sync Replica,简称OSR),它负责异步备份 Leader 副本中的数据

    如果 Leader 失效后,需要选出新的 Leader,选举的原则如下:

    1. 选举时优先从 ISR 中选定,因为这个列表中 Follower 的数据是与 Leader 同步的
    2. 如果 ISR 列表中的 Follower 都不行了,就只能从其他 Follower 中选取

    还可能存在一种极端情况,那就是所有的副本全都失效,此时有以下方案:

    1. 等待 ISR 中的一个活过来,选为 Leader,数据可靠,但活过来的时间不确定
    2. 选择第一个活过来的副本(Replication),不一定是 ISR 中的(可能是 Follower),选为 Leader,以最快速度恢复可用性,但数据不一定完整(因为 Follower 是异步复制,可能并没有讲 Leader 中的数据复制完全)
  • Kafka是如何确保消息消费的有序性

    在Kafka中,Topic 分区中消息只能由消费者组中的唯一的一个消费者处理,所以消息肯定是按照先后顺序进行处理的。但是它也仅仅是保证 Topic 的一个分区顺序处理,不能保证跨分区的消息先后处理顺序。 所以,如果你想要顺序的处理 Topic 的所有消息,那就只提供一个分区。

  • Kafka的再均衡问题是什么意思

    Kafka的再均衡(Rebalancing)是指当消费者组内的消费者发生变化时(比如摸一个消费者出现故障),Kafka会重新分配分区给各个消费者,以实现负载均衡和高可用性。再均衡主要在以下情况下发生:

    1. 增加或减少消费者:当消费者加入或退出消费者组时,触发再均衡。
    2. 分区的增加或减少:当主题的分区数发生变化时,例如添加或删除分区,会触发再均衡。
    3. 消费者心跳超时:如果一个消费者长时间没有发送心跳,Kafka会认为该消费者故障,并触发再均衡。

    image-20231104235022806

    再均衡会引发一下常见问题

    • 消息被重复消费:如果消费者提交的偏移量小于消费者实际消费消息的偏移量。
    • 消息发生丢失:如果消费者提交的偏移量大于消费者实际消费消息的偏移量。

    原因:Kafka内部是通过一个 _consumer_offset 特殊的 Topic 来记录没用过消费者消费到哪一条消息的,消费者每消费一条消息后都会向 _consumer_offset 主题发送对应消息的 offset。

    如果消费者在消费了消息准备提交偏移量前出现了故障,导致提交偏移量小于消费者,同时由于这个分区的故障,导致发生了再均衡,这时其它消费者再消费这个分区的消息时,通过 _consumer_offset 定位到上一次消费的消息,但是实际上上一条消息的后一条消息已经被消费了,从而导致重复消费;

    消息发生丢失这个可能性是比较小的,因为消息都是在消费成功后才提交偏移量的

  • Kafka再均衡发生的常见情况:

    • consumer group 中的新增或删除某个consumer,导致其所消费的分区需要分配到组内其他的 consumer 上;
    • consumer 订阅的 Topic 发生变化,比如订阅的 Topic 采用的是正则表达式的形式,如 test-* 此时如果有一个新建了一个 Topic test-user,那么这个 Topic 的所有分区也是会自动分配给当前的 consumer 的,此时就会发生再平衡;
    • consumer 所订阅的 Topic 发生了新增分区的行为,那么新增的分区就会分配给当前的 consumer,此时就会触发再平衡。

    参考:【精选】Kafka再平衡机制详解_wrr-cat的博客-CSDN博客

  • Kafka提交偏移量的方式

    • 自动提交:当enable.auto.commit被设置为true,提交方式就是让消费者自动提交偏移量,每隔5秒消费者会自动把从poll()方法接收的最大偏移量提交上去

    • 手动提交:当enable.auto.commit被设置为false可以有以下三种提交方式

      • 同步提交:在这种方式下,消费者通过调用 commitSync() 方法来进行偏移量的提交。该方法会阻塞直到提交请求完成,并返回提交结果(成功或失败)。如果提交失败,可以根据需要进行重试。

        备注:同步提交容易出现阻塞,不推荐使用这种方式

      • 异步提交:在这种方式下,消费者通过调用 commitAsync() 方法来进行偏移量的提交。该方法是非阻塞的,它将提交请求发送到 Kafka 服务器并立即返回。同时,还需要传入一个回调函数(Callback)来处理提交结果。

        备注:多个异步提交容易出现偏移量覆盖

      • 同步和异步组合提交:在这种方式下,消费者可以结合使用同步和异步提交,以提高提交的效率和容错性。可以先进行异步提交,然后定期或在特定条件下进行同步提交,以确保偏移量的提交最终得到确认。

        备注:这种方式编写起来比较麻烦,但是更加推荐

2、安装Kafka

略……详情参考【Kafka安装教程】

3、初体验

image-20231104172049202

前期准备

  • Step1:安装Kafka,同时安装Zeekooper

    详情参考【Kafka安装教程】

  • Step2:启动Zeekooper和Kafka

    备注:先启动Zeekooper,后启动Kafka

  • Step3:创建Maven项目

  • Step4:导入依赖

    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-clients</artifactId>
    </dependency>
    

编码测试

  • Step1:编写生产者

    package demo;
    
    import org.apache.kafka.clients.producer.KafkaProducer;
    import org.apache.kafka.clients.producer.ProducerConfig;
    import org.apache.kafka.clients.producer.ProducerRecord;
    
    import java.util.Properties;
    
    /**
     * 生产者
     */
    public class ProducerDemo {
    
        public static void main(String[] args) {
            // 1、编写kafka的配置信息
            Properties properties = new Properties();
            properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.88.130:9092"); // 配置kafka的连接地址
            properties.put(ProducerConfig.RETRIES_CONFIG, 5); // 发送失败,失败的重试次数
            properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
                    "org.apache.kafka.common.serialization.StringSerializer"); // 消息key的序列化器
            properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
                    "org.apache.kafka.common.serialization.StringSerializer"); // 消息value的序列化器
    
            // 2、创建生产者对象
            KafkaProducer<String, String> producer = new KafkaProducer<>(properties);
    
            // 3、封装发送的消息
            /*
            参数一:Topic,主题(相当于RabbitMQ中的 routingKey)
            参数二:消息的key
            参数三:消息的value
             */
            ProducerRecord<String, String> record =
                    new ProducerRecord<>("demo.topic", "100001", "hello kafka");
    
            // 4、发送消息
            producer.send(record);
            System.out.println("消息发送成功");
    
            // 5、关闭消息通道,必须关闭,否则消息发送不成功
            producer.close();
        }
    
    }
    
  • Step2:编写消费者

    package demo;
    
    import org.apache.kafka.clients.consumer.ConsumerConfig;
    import org.apache.kafka.clients.consumer.ConsumerRecord;
    import org.apache.kafka.clients.consumer.ConsumerRecords;
    import org.apache.kafka.clients.consumer.KafkaConsumer;
    
    import java.time.Duration;
    import java.util.Collections;
    import java.util.Properties;
    
    /**
     * 消费者
     */
    public class ConsumerDemo {
    
        public static void main(String[] args) {
            // 1、添加kafka的配置信息
            Properties properties = new Properties();
            properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.88.130:9092"); // kafka的连接地址
            properties.put(ConsumerConfig.GROUP_ID_CONFIG, "demo_1"); // 消费者组
            properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
                    "org.apache.kafka.common.serialization.StringDeserializer"); // 消息key的序列化器
            properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
                    "org.apache.kafka.common.serialization.StringDeserializer"); // 消息value的序列化器
    
            // 2、创建消费者对象
            KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);
    
            // 3、配置订阅主题
            consumer.subscribe(Collections.singletonList("demo.topic"));
    
            // 死循环,为了让当前线程一直处于监听状态
            while (true) {
                // 4、获取消息,每隔1000ms拉取一次
                ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));
                for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                    System.out.println("============================");
                    System.out.println(consumerRecord.key());
                    System.out.println(consumerRecord.value());
                }
            }
        }
    
    }
    
  • Step3:测试

    启动生产者和消费者,两者启动顺序没有要求,每次启动一次生产者,都能在消费者控制台中看到打印消息

配置介绍

  • auto-offset-reset:配置消费起始偏移量

    • earliest:从主题的最早可用消息开始消费,即从主题的起始位置开始。

    • latest:从主题的最新消息开始消费。

    • none:如果没有存储有效的偏移量信息,消费者会抛出异常,而不会自动重置偏移量。这样的设置通常用于强制消费者只能从有效的偏移量处开始消费。

bug记录

  • bug

    问题背景

    问题原因

    问题解决

  • bug1:Kafka连接失败

    问题背景:消费者发送消息失败,报错java.io.IOException: Connection to 192.168.88.130:9092 (id: -1 rack: null) failed.

    image-20231104142841342

    问题原因:虚拟机没有关闭防火墙

    问题解决:关闭虚拟机的防火墙

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/150888.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python科研绘图:P-P图与Q-Q图

目录 什么是P-P图与Q-Q图 分位数 百分位数 Q-Q图步骤与原理 Shapiro-Wilk检验 绘制Q-Q图 绘制P-P图 什么是P-P图与Q-Q图 P-P图和Q-Q图都是用于检验样本的概率分布是否服从某种理论分布。 P-P图的原理是检验实际累积概率分布与理论累积概率分布是否吻合。若吻合&#xf…

HPC 工作负载管理 —— IBM Spectrum LSF Suite

全面的工作负载管理解决方案&#xff0c;通过增强用户和管理员体验以及实现规模性能来简化 HPC。 IBM Spectrum LSF Suites 是面向分布式高性能计算 (HPC) 的工作负载管理平台和作业调度程序。基于 Terraform 的自动化现已可用&#xff0c;该功能可在 IBM Cloud 上为基于 IBM …

c语言:解决数组元素右旋问题,时间复杂度O(N)

题目&#xff1a; 给一个数组&#xff0c;如【1&#xff0c;2&#xff0c;3&#xff0c;4&#xff0c;5&#xff0c;6&#xff0c;7】,k3。 要求得到新数组【5&#xff0c;6&#xff0c;7&#xff0c;1&#xff0c;2&#xff0c;3&#xff0c;4】。 方法一&#xff0c;思路和…

GPT模型支持下的Python-GEE遥感云大数据分析、管理与可视化技术及多领域案例实践应用

随着航空、航天、近地空间等多个遥感平台的不断发展&#xff0c;近年来遥感技术突飞猛进。由此&#xff0c;遥感数据的空间、时间、光谱分辨率不断提高&#xff0c;数据量也大幅增长&#xff0c;使其越来越具有大数据特征。对于相关研究而言&#xff0c;遥感大数据的出现为其提…

EtherCAT从站EEPROM组成信息详解(2):字8-15产品标识区

0 工具准备 1.EtherCAT从站EEPROM数据&#xff08;本文使用DE3E-556步进电机驱动器&#xff09;1 字8-字15产品标识区 1.1 产品标识区组成规范 对于不同厂家和型号的从站&#xff0c;主站是如何区分它们的呢&#xff1f;这就要提起SII的字8-字15区域存储的产品标识&#xff…

计算机视觉:人脸识别与检测

目录 前言 识别检测方法 本文方法 项目解析 完整代码及效果展示 前言 人脸识别作为一种生物特征识别技术&#xff0c;具有非侵扰性、非接触性、友好性和便捷性等优点。人脸识别通用的流程主要包括人脸检测、人脸裁剪、人脸校正、特征提取和人脸识别。人脸检测是从获取的图…

电磁场与电磁波part1--矢量分析

目录 1、方向导数 2、散度定理&#xff08;高斯定理&#xff09; 3、散度与旋度的比较 4、旋度定理&#xff08;斯托克斯定理&#xff09; 5、关于点乘、叉乘、梯度、散度、旋度的计算 ~~~~~~~~~~~~~~~~~~~~~~~~ 确认过眼神&#xff0c;是我看不懂的 ~~~~~~~~~~~~~~~~…

5. HTML中常用标签

5. html常用标签 5.1 标签语义 学习标签是有技巧的&#xff0c;重点是记住每个标签的语义。简单理解就是指标签的含义。即这个标签是用来干嘛的。 根据标签的语义&#xff0c;在合适的地方给一个最为合理的标签。可以让页面结构给清晰。 5.2 标题标签 <h1>-<h6>…

【C++ std::max_element std::min_element std::minmax_element】

一 、std::max_element 寻找范围 [first, last) 中的最大元素。 (1) 用 operator< 比较元素。 (3) 用给定的二元比较函数 comp 比较元素。 (2),(4) 同 (1,3) &#xff0c;但按照 policy 执行。这些重载仅若 std::is_execution_policy_v<std::decay_t > (C20 前)std:…

【C++】泛型编程 ④ ( 函数模板 与 普通函数 调用规则 | 类型自动转换 | 类型自动转换 + 显式指定泛型类型 )

文章目录 一、普通函数 与 函数模板 的调用规则 - 类型自动转换1、函数模板和重载函数2、类型自动转换3、代码示例 - 类型自动转换 二、普通函数 与 函数模板 的调用规则 - 类型自动转换 显式指定泛型类型1、类型自动转换 显式指定泛型类型2、代码示例 - 类型自动转换 显式指…

string的简单操作

目录 string的接口说明 构造 constructor operator 迭代器操作 begin( )和end( ) rbegin( ) 和 rend( ) 范围for和迭代器的关系 范围for 迭代器 容量 size lengtn max_size resize capacity reserve clear empty string类的元素访问 operator[ ] at fro…

构造函数和初始化列表的关系和区别【详解】

构造函数和初始化列表关系和区别&#xff0c;以及为什么有初始化列表&#xff0c;和它的好处 一、构造函数和初始化列表的关系和区别二、为什么有初始化列表三、使用初始化列表的好处 一、构造函数和初始化列表的关系和区别 百度百科这样定义初始化列表&#xff1a;与其他函数…

基于STM32的LoRaWAN无线通信网络设计与实现

LoRaWAN (Long Range Wide Area Network) 是一种低功耗的无线通信技术&#xff0c;用于构建广域物联网。本篇文章将介绍基于STM32微控制器的LoRaWAN无线通信网络的设计与实现&#xff0c;并提供相应的代码示例。 概述 LoRaWAN的无线通信技术采用低功耗长距离传输&#xff0c;…

STM32 独立看门狗

目录 1.独立看门狗介绍 2.独立看门狗本质 3.独立看门狗框图​编辑 4.独立看门狗时钟 5.预分频寄存器&#xff08;IWDG_PR)​编辑 6.重装载寄存器&#xff08;IWDG_RLR) 7.键寄存器&#xff08;IWDG_KR) 8.独立看门狗实验和代码示例 9.独立看门狗和窗口看门狗的异同点 …

【原创】java+swing+mysql个人日记管理系统设计与实现

摘要&#xff1a; 个人日记管理系统是一个可以记录、管理、存储和检索个人日记的应用程序。这个系统允许用户创建和管理多个日记帐户&#xff0c;每个帐户都可以有多个日记条目。用户可以随时添加、编辑或删除日记条目&#xff0c;并可以将这些条目按照主题或其他标准进行分类…

python科研绘图:绘制X-bar图

目录 1.X-bar 图的基本概念 2.X-bar 图的绘制过程 3.X-bar 图的优势 4.X-bar 图的绘制 1.X-bar 图的基本概念 X-bar控制图是一种统计工具&#xff0c;用于监控和控制生产过程中的质量变量。它是过程能力分析和统计过程控制&#xff08;SPC&#xff0c;Statistical Process…

React 高级教程

目录 前言setState函数式编程HooksMy HooksuseState定义原理函数式更新reduce 方法react 源码 useEffect定义原理无限循环 useCallback定义原理 useMemo定义比较 ReduxuseReducer定义使用应用 useContext 前言 在现代前端开发中&#xff0c;React已经成为了一种无法忽视的技术…

Java —— 多态

目录 1. 多态的概念 2. 多态实现条件 3. 重写 重写与重载的区别 4. 向上转型和向下转型 4.1 向上转型 4.2 向下转型 5. 多态的优缺点 6. 避免在构造方法中调用重写的方法 我们从字面上看"多态"两个字, 多态就是有多种状态/形态. 比如一个人可以有多种状态, …

基于STM32的无线通信系统设计与实现

【引言】 随着物联网的迅速发展&#xff0c;无线通信技术逐渐成为现代通信领域的关键技术之一。STM32作为一款广受欢迎的微控制器&#xff0c;具有丰富的外设资源和强大的计算能力&#xff0c;在无线通信系统设计中具有广泛的应用。本文将介绍如何基于STM32实现一个简单的无线通…

Go ZIP压缩文件读写操作

创建zip文件 golang提供了archive/zip包来处理zip压缩文件&#xff0c;下面通过一个简单的示例来展示golang如何创建zip压缩文件&#xff1a; func createZip(filename string) {// 缓存压缩文件内容buf : new(bytes.Buffer)// 创建zipwriter : zip.NewWriter(buf)defer writ…