百度搜索智能化算力调控分配方法

作者 | 泰来

导读

随着近年深度学习技术的发展,搜索算法复杂度不断上升,算力供给需求出现了爆发式的增长。伴随着AI技术逐步走到深水区,算法红利在逐步消失,边际效应日益显著,算力效能的提升尤为重要,同时随着宏观经济影响,大规模的算力需求供给也遭遇到了瓶颈。同时随着流量、时间或系统故障时带来的容量变化,总算力约束也在时刻改变,周期性的出现波峰、波谷,以及会因为流量突增、网络抖动等原因导致系统出现稳定性问题。

在此背景下,需要一种更加智能化、个性化的算力调控分配方法,不断提高系统的自适应性,使得在给定资源上限的情况下,最大化资源投入的性价,同时在故障时刻发生时自适应的调整算力分配,降低系统负载。

全文4328字,预计阅读时间11分钟。

01 问题与挑战

互联网行业十余年的蓬勃发展及硬件性能的持续攀升,使得 Ranking相关算法进入到了深度学习时代,模型、技术创新层出不穷。但随着技术逐步进入到深水区,在同样的算力需求下对效果的增长边际已经非常明显。

同时伴随当前宏观经济影响,大规模算力的需求供给也持续遭遇瓶颈,如何在有限的算力资源内不断创造出更大的效果价值是一项非常有挑战性的工作。

图片

为此我们不断探索根据流量价值及系统状态自适应的进行算力分配,使得总体投入产出比不断提升。

图片

02 整体思路

目前搜索系统流转过程中调控手段彼此相互之间是独立的,调控的算子的输入输出没有全局视角,调控算子彼此割裂、联动和管理是比较困难的,且调控手段大多基于静态阈值配置。但我们认为系统中请求经过每层的调控算子是有状态的,理想的级联系统中每种调控算子应该是全局可见的,需要从全局的视角更好的审视业务系统,站在更高的维度去看算力调控分配这项工作。

我们在微观和宏观两方案开展了相关调控工作:

1.微观:忽略系统容量状态,在当前时刻下根据流量产生的价值来动态的分配算力,使得在给定算力总约束下获得全局最优。

图片

2.宏观:随着流量、时间或系统故障时带来的容量变化,总算力约束在不断改变,需要在给定的资源及响应时间限制下,计算出在当前限制条件下的最优分配方式。动态的调整系统核心阶段的计算强度,合理调控峰值算力。并基于搜索系统的实时状态反馈,自动的调节系统的安全状态。使搜索系统能够在速度、资源、效果、稳定性等多个维度上进行自适应的调控。

图片

2.1 问题建模

变量说明:

第i条流量 r i r_i ri

流量i在阶段j的具体信息,例如队列长度,模型选型等,可以用表示,其中的alpha beta gamma都可以根据经验进行设定并用实验来验证。

Q ( i , j ) = [ α ∗ q u e u e l e n g t h , β ∗ c p u u s a g e , γ ∗ g p u u a s a g e ] Q_(i,j) = [α*queue_length, β*cpu_usage, γ*gpu_uasage] Q(i,j)=[αqueuelength,βcpuusage,γgpuuasage]

流量在第j阶段的折扣因子 Y i Y_i Yi

第i条流量的价值 O i = Y ( r i , Q ( i , 1 ) , Q ( i , 2 ) , … , Q ( i , N ) ) O_i=Y(r_i,Q_(i,1),Q_(i,2),…,Q_(i,N) ) Oi=Y(ri,Q(i,1),Q(i,2),,Q(i,N))

图片

目标:通过调控流量在各个阶段的信息例如队列长度、模型选型等,从而调节折扣因子,最终实现流量价值最大化,假设M条流量经过N个阶段表达如下:

图片

C1 成本约束,对于任意一个阶段,都必须小于等于其成本;

C2 时间约束,对于任意一个请求流量,在N个阶段的耗时综合都必须小于等于规定的耗时;

C3 辅助约束,对于任意一个请求任意一个阶段都必须有大于等于0的值。

对于一个实时的搜索系统来说,在线进行上述的优化并不太实际也会带来比较多的困难。为了简化分析和提高系统的鲁棒性,我们将上述N个阶段拆封成N个子问题,这样方便对各个阶段进行监控和可靠的干预,提高系统的鲁棒性,例如当系统出现巨大的变化时,可以随时动态调整各个阶段的参数。简化问题求解,将C1、C2约束进行一定的拆分。

图片

具体来说,对于阶段j,流量的价值最大化,我们可以看作是上述的一个子问题。

图片

假设 Y j ( r i , Q ( i , j ) ) Y_j (r_i,Q_(i,j)) Yjri,Q(i,j)是单调递增的,但其对 Q ( i , j ) Q_(i,j) Q(i,j)的导数是单调递减的,也就是其价值会随着配置资源的增加而越来越缓慢的增加。

2.2 示例说明

示例:用相关性精排阶段的弹性候选集进行举例

假设将流量i细化成第i条Query,j阶段则为具体筛选阶段,增加一个维度k表示URL级别的参数和特征信息。在正排候选集筛选阶段k信息表示为多个特征的分数信息,authority_feature【权威性特征】、click_feature【点击特征】…correlation_feature【相关性特征】。

则在正排候选集筛选阶段请求i的第k条url的信息可以表示为:

图片

流量i在弹性候选集下的折扣因子,可以看作是 1 - 删掉URL数量在原本可出现在最终排序的Top40的概率,假如候选集合中完全没有删除的URL则无折扣损失,若是候选集合中删除了URL,但对最终Top40的召回无影响,也可以看作是对总价值无折扣影响。

图片

具体来说,针对第i条query的k条url的具体信息,我们采用多个维度的特征进行考量。

图片

其中

图片

如果是0表示丢弃,1表示留下第k条url,希腊字母表示的是采取的阈值标准,例如评分位于后x%。如果一个url的所有特征贡献度排名都处于分布的末尾,则会将该url从候选集中剔除。

图片

03 关键技术

过去传统的调控方式下,既不知道上游阶段做过哪些调控动作,也不知道在自己的阶段上做的调控动作,下游是如何反馈的,只能追求自己的局部最优。而我们认为在搜索这种分层的级联系统下,越往下流转看到的特征和信号越多,调控动作应该随着流转过程发生状态转变,不应该是静态的。我们创新的采用弹性级联调控框架将调控手段进行组合,追求全局的最优解,从全链路上提升算力投入产出的性价比。

图片

具体做法,我们构建的弹性级联框架包含四个部分:

1、调控算子集合,将调控动作按照Query级别、URL级别、Feature级别进行划分,调控算子拥有相同基类,接口规范统一;

2、计算中心,负责实时计算各种调控动作所需的各类信号、以及流量价值的判断、容量信号的获取等;

3、参数集合,经过计算中心产出的特征和信号,固化超参数,使得模块内超参数全局可见,跨模块之间按照规定协议统一进行交互;

4、调控决策器,主要负责根据参数集合,确定各个阶段的调控档位设置并调用算子集合里的算子进行执行,每个调控阶段包含控制流(Control Level)和反馈流(FeedbackLevel),控制流能结合当前阶段看到的特征和信号给出它下游其他阶段的调控档位,反馈流是当前阶段参考其他阶段给出的调控档位建议和当前阶段看到的特征和信号确定实际执行的调控档位。通过这种方式,每个调控阶段既能看到到其他阶段实际执行的调控状态,同时也能根据它们对当前阶段的指导建议进行综合判断,最终在全链路上获取全局最优解。

图片

如上图左侧可以看到整个弹性级联框架的组成部分,右侧是举例正排阶段的弹性候选集的实际计算过程,将各种维度的特征通过计算中心生成价值参数,用于调控决策器进行决策,然后给出实际的正排计算集合。我们不仅建立控制反馈流级联自适应调控系统,而且还提供了一个全局视角的弹性算力分配控制中心。弹性算力系统主要通过对集群各种维度指标的获取、策略分析及周期性执行最适合当前机器负载状态的策略组合参数来实现其核心弹性算力分配决策。

根据当前搜索系统,当前智能弹性调参把系统定义和描述为下面4种状态:系统异常状态,负载峰值状态,弹性过渡状态,负载低谷状态,根据不同的系统状态,执行当前状态的策略集合,从而使资源使用率及业务收益效果最优。具体方案见下图:

图片

主要包含流程如下:

信息采集:自动化的周期性采集业务日志(流量pv,流量分类,流量质量)和机器状态(CPU/MEM使用率)等信息。对于这些信息进行深入挖掘分析,主要从以下几个时间维度进行采集:

1、峰值时间段模块状态信号;

2、前n个采集周期模块状态信号;

3、前一天同时刻前n个采集周期模块状态信号;

4、前一周同时刻前n个采集周期模块状态信号。

系统状态预估: 对各种维度信息采集,之后通过人工规则,在线策略,离线预估等手段评估系统当前状态,把目前系统划分为系统异常状态,系统负载峰值状态,系统负载低谷状态,系统负载过渡状态。下面是系统状态定义规则,及状态转移图:

系统异常状态:系统发生故障,例如系统可用性SLA,CPU负载率,结果空值率等不符合预期。

系统负载峰值状态:系统请求数,CPU负载率等系统容量指标大于指定阈值。

系统负载低谷状态:系统请求数,CPU负载率等系统容量指标小于指定阈值。

系统负载过渡状态:负载峰值和低谷之间的过渡状态。

图片

档位判断:根据系统状态抽象成便于系统决策的系统档位,及每个档位内需要关注的系统问题。

1、异常档位:如何快速服务降级,保证保证系统质量。

2、峰值档位:需要关注系统的稳定性和响应时间,以确保系统在高负载下依然能够稳定运行。

3、低谷档位:可以考虑优化系统资源的分配,提升资源的投入产出比。在探测到系统出现异常故障状态时。

4、过渡档位:一种中间状态,它的主要作用是在系统从低负载状态过渡到高负载状态,或从高负载状态过渡到低负载状态时,提供一个缓冲阶段,以避免系统状态的突然跳变。过渡档位不进行策略的调整,而是保持系统在一个相对稳定的状态。这样做的目的是为了避免频繁的策略调整带来的系统震动,保证系统的稳定性。

方案决策执行:

降级档位主要应对系统异常或重大风险,其对应的策略包括关闭被动触发流量,以及降低召回集合,降低复杂模型计算等策,通过这种方式降低系统的负载,保证核心业务的正常运行。低谷档位对应的是弹性策略集,这些策略主要目的是在低谷期加强复杂策略的计算,提升搜索效果。而在峰值档位,我们主要采用削峰策略,包括减少被动触发流量,以确保系统在高负载下依然能够稳定运行。

示例:视频搜索弹性扩触发:

在系统资源容量低谷阶段,根据指标采集数据计算当前系统容量资源冗余情况,基于冗余资源进行扩触发比例计算,通过弹性算力决策模块下发触发信号,利用闲时资源扩大流量的触发面。

04 总结与展望

通过基于弹性级联框架的调控方式,提升了分层系统的效益比,对于每个用户请求实施精细化、差异化的调控组合,在算力效能提升上取得了不错的成绩。

算力分配是架构研究的核心问题之一,未来会在以下两个方面持续开展系统性工作:

1、结合AI大模型的推理能力在调控组合上可以做到更加精细化,在算力效能的提升上会带来更大的挖掘空间;

2、通过自适应的宏观调控给系统稳定性带来了柔性降级能力,后续会在这个方向上持续深耕,不断提升系统自动化的处置能力。

——END——

推荐阅读

UBC SDK日志级别重复率优化实践

百度搜索深度学习模型业务及优化实践

文生图大型实践:揭秘百度搜索AIGC绘画工具的背后故事!

大模型在代码缺陷检测领域的应用实践

通过Python脚本支持OC代码重构实践(二):数据项提供模块接入数据通路的代码生成

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/150402.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【接口自动化测试】Postman(一) 介绍和安装

一.Postman介绍 Postman是一款非常流行的接口调试工具,它使用简单,而且功能也很强大。不仅测试人员会使用,开发人员也会 经常使用。 主要特点 1. 简单易用的图形用户界面 2. 可以保存接口请求的历史记录 3. 使用测试集Collections可以更…

rocketmq5.X 单机搭建 虚拟机搭建rocketmq5.1.4 搭建最新版本mq rocketmq5.1.4版本单体搭建 rocketmq(一)

1. 官网下载地址: 下载 | RocketMQ 2. 配置环境: 我是在/etc/profile.d 新建了一个rocketmq_env.sh 配置了jdk, maven, 以及mq. mq文件下载的 配置完之后,刷新环境source /etc/profile 3. 配置rocket mq 的jvm配置,就是两个启…

OpenAI:我们暂停了ChatGPT Plus新用户注册

今天中午,OpenAI 首席执行官 Sam Altman 在 X 平台发文说,将暂停 ChatGPT Plus 新用户注册。 we are pausing new ChatGPT Plus sign-ups for a bit > :( the surge in usage post devday has exceeded our c> apacity and we want to make sure e…

UI自动化测试框架的搭建(详解)

前言 今天给大家分享一个seleniumtestngmavenant的UI自动化,可以用于功能测试,也可按复杂的业务流程编写测试用例,今天此篇文章不过多讲解如何实现CI/CD,只讲解自己能独立搭建UI框架,需要阅读者有一定的java语言基础&…

Redis概述

Redis是一款NoSql(非关系型)数据库,实现了主从同步。 使用场景: 对数据高并发的读写。 海量数据的读写。 对数据的可扩展性的。 NoSql数据库举例: Memcache:数据都在内存中,但是数据不持久化,而且只支…

巷议:跌落尘埃与风光无限

近几来制造业的退潮是不争的事实,其中以老资格直辖市天津尤为突出。曾记否,想当年韩国的三星集团是天津最强的外企,但是从2015年开始便撤离了,给天津经济带来了重创。 而天津的汽车产业,也日渐变得软弱。其中那曾经小…

JavaScript语法、语句、数据类型

一、JavaScript语法: 1、JavaScript字面量: JavaScript中的固定值称为字面量。数字字面量可以是整数、小数或者科学计数(e),如3.1415926、1008、123e5等;字符串字面量可以使用单引号或者双引号,如“corli…

用于部署汽车AI项目的全面自动化数据流程

如何创建、优化和扩展汽车 AI 的数据流程 想到汽车行业的人工智能 (AI) 时,脑海中可能会立即浮现未来的道路上遍布自动驾驶汽车的情景。虽然这一切尚未实现,但汽车行业已在 AI 方面取得诸多进步,不仅安全性提高,车内体验也得到改…

数据库sql语句设置外键

当我们需要在数据库表之间建立关联关系时,可以使用外键(Foreign Key)来实现。在 SQL 中,外键可以用来保持数据的完整性,并帮助我们更有效地管理数据。以下是设置外键的步骤: 1.在创建表时,需要…

系统之家重装Win10系统教程图解

系统之家官网给用户们提供了不同品牌系统的下载,帮助更多的用户完成Win10系统的重新安装,从而解决自己Win10系统所遇到的问题。如果有用户不清楚详细的重装系统步骤,那么可以参考下面小编分享借助系统之家装机大师软件重装Win10系统教程图解介…

企业微信H5开发遇到的坑

企业微信官方推荐wx.agentConfig引用<script src"https://open.work.weixin.qq.com/wwopen/js/jwxwork-1.0.0.js"></script>是没有效果的 必须引用以下代码才有效果&#xff0c;这也是我看了社区的回答才有所收获&#xff0c;是一个坑 且VUE引用在线的…

Page分页records有数据,但是total=0,解决办法

Page分页records有数据&#xff0c;但是total0&#xff0c;解决办法 问题&#xff1a;程序运行起来后&#xff0c;后端接收前端传来的搜索请求信息正常&#xff0c;但无法在前端正确反馈信息&#xff0c;通过在后端排查发现total一直等于零&#xff0c;但数据库中有数据&#x…

需求工程咨询和实施服务

服务概述 多年来经纬恒润在汽车电子产品开发与量产、工程服务、研发流程体系建设方面积累了大量的实际研发经验&#xff0c;并为国内外主流OEM和核心供应商提供了相应的量产产品和研发服务&#xff0c;覆盖车身和舒适域、智能驾驶、智能网联、智能座舱、底盘控制、新能源及动力…

正则提取记录

使用正则 https?:\/\/([^\/\s])/

RocketMQ中的消息种类以及消费模式

RocketMQ中的消息种类以及消费模式 前言消息的种类按消息的发送方式同步消息异步消息单向消息 按消息的种类普通消息&#xff08;Normal Message&#xff09;顺序消息&#xff08;Orderly Message&#xff09;延时消息&#xff08;Delay Message&#xff09;事务消息&#xff0…

【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (六)

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

Chrome 浏览器经常卡死问题解决

Chrome 浏览器经常卡死问题解决 chrome 任务管理器杀进程 mac 后台有很多 google chrome helper 线程并且内存占用较高 一直怀疑是插件的锅 其实并不是-0- 查看是哪个网页&#xff0c;哪个插件占用内存 chrome 更多工具 -> 任务管理器 切换到稳定版本的 chrome&#xff0c…

每天学习一点点之从 SonarQube Bug 看对线程中断异常的处理

最近在基于 SonarQube 对代码进行质量优化&#xff0c;说实话&#xff0c;之前觉得 SonarQube 这种很无聊&#xff0c;但最近静下心来看了一些扫描出来的问题后&#xff0c;发现这种工具作用还是挺大的&#xff0c;能够帮助我们找到代码中的隐藏缺陷&#xff0c;从而夯实基础。…

数据存储和内存对齐

校内课复习笔记 非数值数据表示 在计算机中&#xff0c;只有01序列&#xff0c;这串01序列是什么意思&#xff0c;由人为定义。 西文字符 在ASCII码中&#xff0c;通过一个65的偏移量&#xff0c;使得一部分无符号数指向A-Za-z。 在C语言中&#xff0c;通过char类型的转换规范…

Zookeeper Java SDK 开发入门

文章目录 一、概述二、导入依赖包三、与 Zookeeper 建立连接四、判断 ZooKeeper 节点是否存在四、创建 ZooKeeper 节点数据五、获取 ZooKeeper 节点数据六、修改 ZooKeeper 节点数据七、异步获取 ZooKeeper 节点数据八、完整示例 如果您还没有安装Zookeeper请看ZooKeeper 安装说…