kubernetes--资源调度

目录

一、自动调度

  1. Pod 启动创建过程:

 2. 调度过程:

 2.1 调度分为几个部分:

  2.2 常见的预算策略( Predicate ):

  2.3 常见的优选策略(priorities):

二、定向调度:

 1. 定向调度策略:

 2. nodeName字段定向调度node节点:

​编辑

 3. nodeSelector字段定向调度node节点:

  3.1 标签的管理操作:

  3.2 使用标签定向调度:

三、亲和性:

 1. 节点亲和性:

 2. Pod 亲和性:

  2.1 pod的亲和与反亲和:

  2.2 拓扑域概念:

 3.亲和性的策略:

 4. 键值运算关系:

 5. 亲和性示例:

  5.1 节点亲和示例:

  5.2 Pod 亲和性调度示例:

5.3 Pod 反亲和性调度示例:

四、污点和容忍:

 1. 污点(Taint):

  1.1 污点的组成格式:

 1.2 effect 支持的选项:

  1.3 示例:

  1.3.1 NoSchedule示例:

  1.3.2 NoExecute示例:

 2. 容忍(Tolerations):

 3. 其它注意事项:

五、cordon 和 drain:

 1. cordon:

 2. drain:

六、Pod启动阶段:

 1. pod 启动过程:

 2. Pod生命周期的5种状态:

 3. 如何删除 Unknown 状态的 Pod ?

 4. 故障排除步骤:


一、自动调度

  1. Pod 启动创建过程:

  1. Kubernetes 是通过 List-Watch 的机制进行每个组件的协作,保持数据同步的,每个组件之间的设计实现了解耦。
  2. 用户是通过 kubectl 根据配置文件,向 APIServer 发送命令,在 Node 节点上面建立 Pod 和 Container。
  3. APIServer 经过 API 调用,权限控制,调用资源和存储资源的过程,实际上还没有真正开始部署应用。这里    需要 Controller Manager、Scheduler 和 kubelet 的协助才能完成整个部署过程。 

在 Kubernetes 中,所有部署的信息都会写到 etcd 中保存。实际上 etcd 在存储部署信息的时候,会发送 Create 事件给 APIServer,而 APIServer 会通过监听(Watch)etcd 发过来的事件。其他组件也会监听(Watch)APIServer 发出来的事件

(1)这里有三个 List-Watch,分别是 Controller Manager(运行在 Master),Scheduler(运行在 Master),kubelet(运行在 Node)。 他们在进程已启动就会监听(Watch)APIServer 发出来的事件。

(2)用户通过 kubectl 或其他 API 客户端提交请求给 APIServer 来建立一个 Pod 对象副本。

(3)APIServer 尝试着将 Pod 对象的相关元信息存入 etcd 中,待写入操作执行完成,APIServer 即会返回确认信息至客户端。

(4)当 etcd 接受创建 Pod 信息以后,会发送一个 Create 事件给 APIServer。

(5)由于 Controller Manager 一直在监听(Watch,通过https的6443端口)APIServer 中的事件。此时 APIServer 接受到了 Create 事件,又会发送给 Controller Manager。

(6)Controller Manager 在接到 Create 事件以后,调用其中的 Replication Controller 来保证 Node 上面需要创建的副本数量。一旦副本数量少于 RC 中定义的数量,RC 会自动创建副本。总之它是保证副本数量的 Controller(PS:扩容缩容的担当)。

(7)在 Controller Manager 创建 Pod 副本以后,APIServer 会在 etcd 中记录这个 Pod 的详细信息。例如 Pod 的副本数,Container 的内容是什么。

(8)同样的 etcd 会将创建 Pod 的信息通过事件发送给 APIServer。

(9)由于 Scheduler 在监听(Watch)APIServer,并且它在系统中起到了“承上启下”的作用,“承上”是指它负责接收创建的 Pod 事件,为其安排 Node;“启下”是指安置工作完成后,Node 上的 kubelet 进程会接管后继工作,负责 Pod 生命周期中的“下半生”。 换句话说,Scheduler 的作用是将待调度的 Pod 按照调度算法和策略绑定到集群中 Node 上。

(10)Scheduler 调度完毕以后会更新 Pod 的信息,此时的信息更加丰富了。除了知道 Pod 的副本数量,副本内容。还知道部署到哪个 Node 上面了。并将上面的 Pod 信息更新至 API Server,由 APIServer 更新至 etcd 中,保存起来。

(11)etcd 将更新成功的事件发送给 APIServer,APIServer 也开始反映此 Pod 对象的调度结果。

(12)kubelet 是在 Node 上面运行的进程,它也通过 List-Watch 的方式监听(Watch,通过https的6443端口)APIServer 发送的 Pod 更新的事件。kubelet 会尝试在当前节点上调用 Docker 启动容器,并将 Pod 以及容器的结果状态回送至 APIServer。

(13)APIServer 将 Pod 状态信息存入 etcd 中。在 etcd 确认写入操作成功完成后,APIServer将确认信息发送至相关的 kubelet,事件将通过它被接受。

  • 注意:  在创建 Pod 的工作就已经完成了后,为什么 kubelet 还要一直监听呢?原因很简单,假设这个时候 kubectl 发命令,要扩充 Pod 副本数量,那么上面的流程又会触发一遍,kubelet 会根据最新的 Pod 的部署情况调整 Node 的资源。又或者 Pod 副本数量没有发生变化,但是其中的镜像文件升级了,kubelet 也会自动获取最新的镜像文件并且加载。

 2. 调度过程:

Scheduler 是 kubernetes 的调度器,主要的任务是把定义的 pod 分配到集群的节点上。其主要考虑的问题如下:

  • 公平:如何保证每个节点都能被分配资源
  • 资源高效利用:集群所有资源最大化被使用
  • 效率:调度的性能要好,能够尽快地对大批量的 pod 完成调度工作
  • 灵活:允许用户根据自己的需求控制调度的逻辑

Sheduler 是作为单独的程序运行的,启动之后会一直监听 APIServer,获取 spec.nodeName 为空的 pod,对每个 pod 都会创建一个 binding,表明该 pod 应该放到哪个节点上。

 2.1 调度分为几个部分:

  • 首先是过滤掉不满足条件的节点,这个过程称为预算策略(predicate);
  • 然后对通过的节点按照优先级排序,这个是优选策略(priorities);
  • 最后从中选择优先级最高的节点。如果中间任何一步骤有错误,就直接返回错误。

  2.2 常见的预算策略( Predicate ):

  • PodFitsResources:节点上剩余的资源是否大于 pod 请求的资源。
  • PodFitsHost:如果 pod 指定了 NodeName,检查节点名称是否和 NodeName 匹配。
  • PodFitsHostPorts:节点上已经使用的 port 是否和 pod 申请的 port 冲突。
  • PodSelectorMatches:过滤掉和 pod 指定的 label 不匹配的节点。
  • NoDiskConflict:已经 mount 的 volume 和 pod 指定的 volume 不冲突,除非它们都是只读。

如果在 predicate 过程中没有合适的节点,pod 会一直在 pending 状态,不断重试调度,直到有节点满足条件。 经过这个步骤,如果有多个节点满足条件,就继续 priorities 过程:按照优先级大小对节点排序。

  2.3 常见的优选策略(priorities):

  • LeastRequestedPriority:通过计算CPU和Memory的使用率来决定权重,使用率越低权重越高。也就是说,这个优先级指标倾向于资源使用比例更低的节点。
  • BalancedResourceAllocation:节点上 CPU 和 Memory 使用率越接近,权重越高。这个一般和上面的一起使用,不单独使用。比如 node01 的 CPU 和 Memory 使用率 20:60,node02 的 CPU 和 Memory 使用率 50:50,虽然 node01 的总使用率比 node02 低,但 node02 的 CPU 和 Memory 使用率更接近,从而调度时会优选 node02。
  • ImageLocalityPriority:倾向于已经有要使用镜像的节点,镜像总大小值越大,权重越高。

二、定向调度:

 1. 定向调度策略:

  1. pod.spec.nodeName 将 Pod 直接调度到指定的 Node 节点上,会跳过 Scheduler 的调度策略,该匹配规则是强制匹配
  2. pod.spec.nodeSelector:通过 kubernetes 的 label-selector 机制选择节点,由调度器调度策略匹配 label,然后调度 Pod 到目标节点,该匹配规则属于强制约束

 2. nodeName字段定向调度node节点:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: myapp01
spec:
  replicas: 3
  selector:
    matchLabels:
      app: myapp
  template:
    metadata:
      labels:
        app: myapp
    spec:
      nodeName: node01
      containers:
      - name: myapp
        image: soscscs/myapp:v1
        ports:
        - containerPort: 80

kubectl apply -f myapp.yaml

kubectl get pods -o wide  #查看pod信息

 3. nodeSelector字段定向调度node节点:

  3.1 标签的管理操作:

#添加标签
kubectl label <资源类型> <资源名称> 标签key=标签value

#修改标签
kubectl label <资源类型> <资源名称> 标签key=标签value --overwrite

#删除标签
kubectl label <资源类型> <资源名称> 标签key-

#查看标签
kubectl get <资源类型> [资源名称] --show-labels

#查看指定标签的资源类型
kubectl get <资源类型> -l 标签key[=标签value]

    给对应的 node 设置标签分别为 kgc=a 和 kgc=b

kubectl label nodes node01 www=a

kubectl label nodes node02 www=b

  3.2 使用标签定向调度:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: myapp02
spec:
  replicas: 3
  selector:
    matchLabels:
      app: myapp
  template:
    metadata:
      labels:
        app: myapp
    spec:
      nodeSelector:
        www: b
      containers:
      - name: myapp02
        image: soscscs/myapp:v1
        ports:
        - containerPort: 80

三、亲和性:

 1. 节点亲和性:

pod.spec.affinity.nodeAffinity    管理字段

  • preferredDuringSchedulingIgnoredDuringExecution:软策略
  • requiredDuringSchedulingIgnoredDuringExecution:硬策略

匹配指定node节点的标签,将要部署的Pod调度到满足条件的node节点上

 2. Pod 亲和性:

pod.spec.affinity.podAffinity/podAntiAffinity   管理字段

  • preferredDuringSchedulingIgnoredDuringExecution:软策略
  • requiredDuringSchedulingIgnoredDuringExecution:硬策略

  2.1 pod的亲和与反亲和:

  • Pod亲和性(podAffinity):匹配指定的Pod的标签,将要部署的Pod调度到与指定Pod所在的node节点处于同一个拓扑域的node节点上如果有多个node节点属于同一个拓扑域,通过Pod亲和性部署多个Pod时则调度器会试图将Pod均衡的调度到处于同一个拓扑域的node节点上                         
  • Pod反亲和性(podAntiAffinity):匹配指定的Pod的标签,将要部署的Pod调度到与指定Pod所在的node节点处于不同的拓扑域的node节点上如果有多个node节点不在同一个拓扑域,通过Pod反亲和性部署多个Pod时则调度器会试图将Pod均衡的调度到不在同一个拓扑域的node节点上

  2.2 拓扑域概念:

spec.affinity.podAffinity.requiredDuringSchedulingIgnoredDuringExecution.topologyKey

topologyKey  定义拓扑域的键或键值 ,调度器试图在每个拓扑域中放置数量均衡的 Pod。

再通过pod的亲和性可以更加细致的管理pod的调度

 3.亲和性的策略:

  • 硬策略(required....):要强制性的满足条件,如果没有满足条件的node节点,Pod会处于Pending状态,直到有符合条件的node节点出现
  • 软策略(preferred....):非强制性的,会优先选择满足条件的node节点进行调度,即使没有满足条件的node节点,Pod依然会完成调度

 4. 键值运算关系:

  • In:label 的值在某个列表中
  • NotIn:label 的值不在某个列表中
  • Gt:label 的值大于某个值
  • Lt:label 的值小于某个值
  • Exists:某个 label 存在
  • DoesNotExist:某个 label 不存在

 5. 亲和性示例:

  5.1 节点亲和示例:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: myapp01
spec:
  replicas: 3
  selector:
    matchLabels:
      app: myapp
  template:
    metadata:
      labels:
        app: myapp
    spec:
      containers:
      - name: myapp01
        image: soscscs/myapp:v1
        ports:
        - containerPort: 80
      affinity:                  #亲和性
        nodeAffinity:            #节点亲和性
          requiredDuringSchedulingIgnoredDuringExecution:  #硬策略
            nodeSelectorTerms:        #筛选node标签
            - matchExpressions:
              - key: www             #键
                operator: In         #键值运算关系
                values:              #值
                - a

  5.2 Pod 亲和性调度示例:

node01 node02两个节点都有www标签,所以01 02再统一拓扑域,但是pod亲和性的硬限制在kubernetes.io/hostname为node02的节点,我这里node节点太少看不出效果,正常同一拓扑域中大多会包含多个node节点,当我们选择完拓扑域后还可以再通过pod的亲和性选择指定的节点

apiVersion: v1
kind: Pod
metadata:
  name: myapp
  labels:
    app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
  affinity:
    podAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
      - labelSelector:
          matchExpressions:
          - key: kubernetes.io/hostname
            operator: In
            values:
            - node02
        topologyKey: www

5.3 Pod 反亲和性调度示例:

apiVersion: v1
kind: Pod
metadata:
  name: myapp
  labels:
    app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
  affinity:
    podAntiAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
      - labelSelector:
          matchExpressions:
          - key: kubernetes.io/hostname
            operator: NotIn
            values:
            - node02
        topologyKey: www

   如果把硬策略和软策略合在一起使用,则要先满足硬策略之后才会满足软策略

四、污点和容忍:

  • 节点亲和性,是Pod的一种属性(偏好或硬性要求),它使Pod被吸引到一类特定的节点。Taint 则相反,它使节点能够排斥一类特定的 Pod。
  • Taint 和 Toleration 相互配合,可以用来避免 Pod 被分配到不合适的节点上。每个节点上都可以应用一个或多个 taint ,这表示对于那些不能容忍这些 taint 的 Pod,是不会被该节点接受的。如果将 toleration 应用于 Pod 上,则表示这些 Pod 可以(但不一定)被调度到具有匹配 taint 的节点上。
  • 使用 kubectl taint 命令可以给某个 Node 节点设置污点,Node 被设置上污点之后就和 Pod 之间存在了一种相斥的关系,可以让 Node 拒绝 Pod 的调度执行,甚至将 Node 已经存在的 Pod 驱逐出去。

 1. 污点(Taint):

  1.1 污点的组成格式:

key=value:effect

每个污点有一个 key 和 value 作为污点的标签,其中 value 可以为空,effect 描述污点的作用。

#设置污点
kubectl taint node node01 key1=value1:NoSchedule

#节点说明中,查找 Taints 字段
kubectl describe node node-name  

#去除污点
kubectl taint node node01 key1:NoSchedule-

 1.2 effect 支持的选项:

  1. NoSchedule:表示 k8s 将不会将 Pod 调度到具有该污点的 Node 上
  2. PreferNoSchedule:表示 k8s 将尽量避免将 Pod 调度到具有该污点的 Node 上
  3. NoExecute:表示 k8s 将不会将 Pod 调度到具有该污点的 Node 上,同时会将 Node 上已经存在的 Pod 驱逐出去

  1.3 示例:

  1.3.1 NoSchedule示例:
kubectl taint node node01 key=wzw:NoSchedule
#设置污点

kubectl create deployment nginx --image=nginx --port=80 --replicas=3
#使用deployment控制器创建3个pod

  1.3.2 NoExecute示例:
kubectl taint node node02 key=www:NoExecute
#创建驱逐

kubectl taint node node02 key:NoExecute-
#删除驱逐

 2. 容忍(Tolerations):

设置了污点的 Node 将根据 taint 的 effect:NoSchedule、PreferNoSchedule、NoExecute 和 Pod 之间产生互斥的关系,Pod 将在一定程度上不会被调度到 Node 上。但我们可以在 Pod 上设置容忍(Tolerations),意思是设置了容忍的 Pod 将可以容忍污点的存在,可以被调度到存在污点的 Node 上。

kubectl taint node node01 key=www:NoExecute
kubectl taint node node02 key=www:NoExecute
#将两个node节点都设置污点

apiVersion: v1
kind: Pod
metadata:
  name: myapp01
  labels:
    app: myapp01
spec:
  containers:
  - name: with-node-affinity
    image: soscscs/myapp:v1
  tolerations:
  - key: "check"         #污点键
    operator: "Equal"    #容忍
    value: "mycheck"     #污点值
    effect: "NoExecute"  #容忍污点的类型
    tolerationSeconds: 3600     #用于描述当 Pod 需要被驱逐时可以在 Node 上继续保留运行的时间

 3. 其它注意事项:

(1)当不指定 key 值时,表示容忍所有的污点 key
  tolerations:
  - operator: "Exists"
  
(2)当不指定 effect 值时,表示容忍所有的污点作用
  tolerations:
  - key: "key"
    operator: "Exists"

(3)有多个 Master 存在时,防止资源浪费,可以如下设置
kubectl taint node Master-Name node-role.kubernetes.io/master=:PreferNoSchedule

//如果某个 Node 更新升级系统组件,为了防止业务长时间中断,可以先在该 Node 设置 NoExecute 污点,把该 Node 上的 Pod 都驱逐出去
kubectl taint node node01 check=mycheck:NoExecute

//此时如果别的 Node 资源不够用,可临时给 Master 设置 PreferNoSchedule 污点,让 Pod 可在 Master 上临时创建
kubectl taint node master node-role.kubernetes.io/master=:PreferNoSchedule

//待所有 Node 的更新操作都完成后,再去除污点
kubectl taint node node01 check=mycheck:NoExecute-

五、cordon 和 drain:

 1. cordon:

 将 Node 标记为不可调度的状态,这样就不会让新创建的 Pod 在此 Node 上运行

kubectl cordon <NODE_NAME> 		 #该node将会变为SchedulingDisabled不可调度状态

kubectl uncordon <NODE_NAME>        #标记为可调度的状态

 2. drain:

   kubectl drain 可以让 Node 节点开始释放所有 pod,并且不接收新的 pod 进程。drain 本意排水,意思是将出问题的 Node 下的 Pod 转移到其它 Node 下运行,驱逐

kubectl drain <NODE_NAME> --ignore-daemonsets --delete-emptydir-data --force

--ignore-daemonsets:无视 DaemonSet 管理下的 Pod。
--delete-emptydir-data:如果有 mount local volume 的 pod,会强制杀掉该 pod。
--force:强制释放不是控制器管理的 Pod。

六、Pod启动阶段:

Pod 创建完之后,一直到持久运行起来,中间有很多步骤,也就有很多出错的可能,因此会有很多不同的状态。

 1. pod 启动过程:

  1. 控制器创建Pod副本
  2. 调度器scheduler根据调度算法选择一台最适合的node节点调度Pod
  3. kubelet拉取镜像
  4. kubelet挂载存储卷等
  5. kubelet创建并运行容器
  6. kubelet根据容器的探针探测结果设置Pod状态

 2. Pod生命周期的5种状态:

  • Pending    Pod已经创建,但是Pod还处于包括未完成调度到node节点的过程或者还处于在镜像拉取过程中、存储卷挂载失败的情况
  • Running    Pod所有容器已被创建,且至少有一个容器正在运行
  • Succeeded  Pod所有容器都已经成功退出,且不再重启。(completed)
  • Failed     Pod所有容器都退出,且至少有一个容器是异常退出的。(error)
  • Unknown    master节点的controller manager无法获取到Pod状态,通常是因为master节点的apiserver与Pod所在node节点的kubelet通信失联导致的

总结:Pod遵循预定义的生命周期,起始于Pending阶段,如果至少其中有一个主容器正常运行,则进入Running阶段,之后取决于Pod是否有容器以失败状态退出而进入Succeeded或者Failed阶段。

 3. 如何删除 Unknown 状态的 Pod ?

  • 从集群中删除有问题的 Node。使用公有云时,kube-controller-manager 会在 VM 删除后自动删除对应的 Node。 而在物理机部署的集群中,需要管理员手动删除 Node(kubectl delete node <node_name>)。
  • 被动等待 Node 恢复正常,Kubelet 会重新跟 kube-apiserver 通信确认这些 Pod 的期待状态,进而再决定删除或者继续运行这些 Pod。
  • 主动删除 Pod,通过执行 kubectl delete pod <pod_name> --grace-period=0 --force 强制删除 Pod。但是这里需要注意的是,除非明确知道 Pod 的确处于停止状态(比如 Node 所在 VM 或物理机已经关机),否则不建议使用该方法。特别是 StatefulSet 管理的 Pod,强制删除容易导致脑裂或者数据丢失等问题。

 4. 故障排除步骤:

//查看Pod事件
kubectl describe TYPE NAME_PREFIX  

//查看Pod日志(Failed状态下)
kubectl logs <POD_NAME> [-c Container_NAME]

//进入Pod(状态为running,但是服务没有提供)
kubectl exec –it <POD_NAME> bash

//查看集群信息
kubectl get nodes

//发现集群状态正常
kubectl cluster-info

//查看kubelet日志发现
journalctl -xefu kubelet

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/149855.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

性能小课堂:Jmeter录制手机app脚本!

环境准备&#xff1a;1.手机2.wifi3.Jmeter 具体步骤&#xff1a; 1、启动Jmeter&#xff1b; 2、“测试计划”中添加“线程组”&#xff1b; 3、“工作台”中添加“HTTP代理服务器”&#xff1b; 4、配置代理服务器&#xff1a;Global Settings下面的端口配置&#xff1a…

Redis 配置文件信息中文翻译版

前言 Redis 配置文件信息中文翻译版&#xff0c;方便大家阅读和理解对应参数信息及配置参数信息 # Redis configuration file example# Note on units: when memory size is needed, it is possible to specify # it in the usual form of 1k 5GB 4M and so forth: # 注意:当…

探索游戏公司跨部门合作的项目管理工具选择

为了实现出色的用户体验&#xff0c;游戏公司需要强大的研发能力和发行运营经验。通常情况下&#xff0c;游戏公司内部有多个独立工作的研发部门和发行部门&#xff0c;它们需要跨部门协作。随着公司快速发展和游戏项目增加&#xff0c;游戏公司迫切需要一套适用于特殊协作流程…

【Java 进阶篇】JQuery 案例:qq表情选择,表达情感的小黄脸

在我们的数字交流时代&#xff0c;表情符号已成为表达情感的重要方式之一。为了丰富用户的输入体验&#xff0c;qq表情选择功能应运而生。通过巧妙运用 JQuery&#xff0c;我们可以在页面中实现一个生动活泼的表情选择框&#xff0c;让用户轻松表达各种情感。本篇博客将深入探讨…

使用postman测试

第一步&#xff1a; 第二步&#xff1a; 第三步&#xff1a;添加请求 第四步&#xff1a;填写请求 代码实现自动关联的位置&#xff1a; 为相关联的接口设置环境&#xff1a; 使用设置的环境变量&#xff1a; 参数化实现测试&#xff1a;测试脚本中仅测试数据不一样&#xff…

6、使用本地模拟器调试项目

本地模拟器推荐内存为16G以上&#xff0c;最低内存要求8G&#xff08;比较卡顿&#xff09; 一、安装本地镜像 1、在开发工具的“文件”菜单中选择“设置” 2、在“设置”中选择“SDK”&#xff0c;在右侧勾选“System-image-phone”&#xff0c;点击“应用”开始安装 3、点击…

基于单片机的水位检测系统仿真设计

**单片机设计介绍&#xff0c; 基于单片机的水位检测系统仿真设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的水位检测系统仿真系统是一种用于模拟水位检测系统的工作过程&#xff0c;以验证设计方案的可行性和优…

TiDB单机集群模拟生产环境

1、先部署环境&#xff0c;安装5.4.3版本&#xff0c;详细的安装步骤见官方文档&#xff1a;单机集群模拟生产环境安装教程 配置文件topo.yaml global:user: "tidb"ssh_port: 22deploy_dir: "/tidb-deploy"data_dir: "/tidb-data"monitored:no…

科研学习|研究方法——Python计量Logit模型

一、离散选择模型 莎士比亚曾经说过&#xff1a;To be, or not to be, that is the question&#xff0c;这就是典型的离散选择模型。如果被解释变量时离散的&#xff0c;而非连续的&#xff0c;称为“离散选择模型”。例如&#xff0c;消费者在购买汽车的时候通常会比较几个不…

<Linux>(极简关键、省时省力)《Linux操作系统原理分析之进程管理1》(3)

《Linux操作系统原理分析《Linux操作系统原理分析之进程管理1》》&#xff08;3&#xff09; 3 进程管理3.1 基础3.1.1 进程执行3.1.2 进程定义3.1.3 进程特征3.1.4 利弊 3.2 进程状态和进程控制3.2.1 进程的状态和转换3.2.2 进程的实体 3.2.3 进程控制 3.3 进程状态和进程控制…

【电路笔记】-快速了解无源器件

快速了解无源器件 文章目录 快速了解无源器件1、概述2、电阻器作为无源器件3、电感器作为无源器件4、电容器作为无源器件5、总结 无源器件是电子电路的主要构建模块&#xff0c;没有它们&#xff0c;这些电路要么根本无法工作&#xff0c;要么变得不稳定。 1、概述 那么什么是…

从理论到实践:深度解读BIO、NIO、AIO的优缺点及使用场景

文章目录 BIO优缺点示例代码 NIO优缺点示例代码 AIO优缺点示例代码 总结 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 BIO、NIO和AIO是Java编程语言中用于处理输入输出&#xff08;IO…

M系列 Mac安装配置Homebrew

目录 首先&#xff0c;验证电脑是否安装了Homebrew 1、打开终端输入以下指令&#xff1a; 2、如图所示&#xff0c;该电脑没有安装Homebrew &#xff0c;下面我们安装Homebrew 一、官网下载 &#xff08;不建议&#xff09; 1、我们打开官网&#xff1a;https://brew.sh/ …

微信群BUG大揭秘!开启身份切换神器

前言 最近微信群里出现了一个神秘的BUG&#xff0c;普通群成员竟然可以艾特全体成员。今天&#xff0c;就让我们一起揭秘这个令人震惊的微信群普通成员可全体成员的BUG 复现步骤 复现步骤也很简单&#xff0c;前提条件就是要在PC客户端操作&#xff01;首先得有个属于自己的群…

天马行空的超级炫酷旋转图片-前端

一、实现代码&#xff08;html部分&#xff09; <!DOCTYPE html> <html> <head lang"en"><meta charset"UTF-8"><title>3D旋转</title><style type"text/css">*{padding: 0;margin: 0;}body,html{he…

【轨道机器人】实现Windows与下位机串口通信(未完成)

方案一&#xff1a;QT&#xff0c;编写类似串口调试助手的APP&#xff0c;连接上硬件&#xff0c;qt有个好像是串口缓存函数&#xff0c;可以防止占用CPU。&#xff08;缺点qt估计要时间学&#xff09; 方案二&#xff1a;利用vscode、C&#xff0c;编写一个可执行exe文件&…

网站高性能架构设计——高性能数据库集群

从公众号转载&#xff0c;关注微信公众号掌握更多技术动态 --------------------------------------------------------------- 一、高性能数据库简介 1.高性能数据库方式 读写分离&#xff1a;将访问压力分散到集群中的多个节点&#xff0c;没有分散存储压力 分库分表&…

SpringBoot3新特性

本篇文章参考尚硅谷springboot3课程: https://www.bilibili.com/video/BV1Es4y1q7Bf?p94&vd_sourced6deb2b69988de2ae72087817e5143d7 原版笔记: https://www.yuque.com/leifengyang/springboot3/xy9gqc2ezocvz4wn 1.自动配置包位置变化 现在指定自动配置类放在了下面这…

Unity中Shader矩阵的乘法

文章目录 前言一、矩阵乘以标量二、矩阵和矩阵相乘1、第一个矩阵的列数必须 与 第二个矩阵的行数相等&#xff0c;否则无法相乘&#xff01;2、相乘的结果矩阵&#xff0c;行数由第一个矩阵的行数决定&#xff0c;列数由第二个矩阵的列数决定&#xff01; 三、单位矩阵四、矩阵…