linux jstat 简介

本文目录一览:

  • 1、Linux使用jstat命令查看jvm的GC情况
  • 2、linux怎么监控 jvm内存 jstat
  • 3、Linux系统监控要用到哪些命令
  • 4、linux上如何安装jstatd服务

Linux使用jstat命令查看jvm的GC情况

Linux 使用jstat命令查看jvm的GC情况

命令格式

jstat命令命令格式:

jstat [Options] vmid[interval] [count]

参数说明:

Options,选项,我们一般使用 -gcutil 查看gc情况

vmid

,VM的进程号,即当前运行的java进程号

interval

,间隔时间,单位为秒或者毫秒

count

,打印次数,如果缺省则打印无数次

示例说明

示例

通常运行命令如下:

jstat -gc 12538 5000

即会每5秒一次显示进程号为12538的java进成的GC情况,

显示内容如下图:

结果说明

   S0C:年轻代中第一个survivor(幸存区)的容量 (字节)

S1C

:年轻代中第二个survivor(幸存区)的容量 (字节)

S0U

:年轻代中第一个survivor(幸存区)目前已使用空间 (字节)

S1U

:年轻代中第二个survivor(幸存区)目前已使用空间 (字节)

EC

:年轻代中Eden(伊甸园)的容量 (字节)

EU

:年轻代中Eden(伊甸园)目前已使用空间 (字节)

OC

:Old代的容量 (字节)

OU

:Old代目前已使用空间 (字节)

PC

:Perm(持久代)的容量 (字节)

PU

:Perm(持久代)目前已使用空间 (字节)

YGC

:从应用程序启动到采样时年轻代中gc次数

YGCT

:从应用程序启动到采样时年轻代中gc所用时间(s)

FGC

:从应用程序启动到采样时old代(全gc)gc次数

FGCT

:从应用程序启动到采样时old代(全gc)gc所用时间(s)

GCT

:从应用程序启动到采样时gc用的总时间(s)

NGCMN

:年轻代(young)中初始化(最小)的大小 (字节)

NGCMX

:年轻代(young)的最大容量 (字节)

NGC

:年轻代(young)中当前的容量 (字节)

OGCMN

:old代中初始化(最小)的大小 (字节)

OGCMX

:old代的最大容量 (字节)

OGC

:old代当前新生成的容量 (字节)

PGCMN

:perm代中初始化(最小)的大小 (字节)

PGCMX

:perm代的最大容量 (字节)

PGC

:perm代当前新生成的容量 (字节)

S0

:年轻代中第一个survivor(幸存区)已使用的占当前容量百分比

S1

:年轻代中第二个survivor(幸存区)已使用的占当前容量百分比

E

:年轻代中Eden(伊甸园)已使用的占当前容量百分比

O

:old代已使用的占当前容量百分比

P

:perm代已使用的占当前容量百分比

S0CMX

:年轻代中第一个survivor(幸存区)的最大容量 (字节)

S1CMX

:年轻代中第二个survivor(幸存区)的最大容量 (字节)

ECMX

:年轻代中Eden(伊甸园)的最大容量 (字节)

DSS

:当前需要survivor(幸存区)的容量 (字节)(Eden区已满)

TT

: 持有次数限制

MTT

: 最大持有次数限制

linux怎么监控 jvm内存 jstat

jstat

可以观察到classloader,compiler,gc相关信息

-class:统计class loader行为信息

-compile:统计编译行为信息

-gc:统计jdk gc时heap信息

-gccapacity:统计不同的generations(不知道怎么翻译好,包括新生区,老年区,permanent区)相应的heap容量情况

-gccause:统计gc的情况,(同-gcutil)和引起gc的事件

-gcnew:统计gc时,新生代的情况

-gcnewcapacity:统计gc时,新生代heap容量

-gcold:统计gc时,老年区的情况

-gcoldcapacity:统计gc时,老年区heap容量

-gcpermcapacity:统计gc时,permanent区heap容量

-gcutil:统计gc时,heap情况

(详见)

Linux系统监控要用到哪些命令

记录一下自己常用的linux系统命令,方便以后查阅,发觉记忆越来越不行了

找到最耗CPU的java线程ps命令

命令:ps -mp pid -o THREAD,tid,time 或者 ps -Lfp pid

结果展示:

这个命令的作用,主要是可以获取到对应一个进程下的线程的一些信息。 比如你想分析一下一个java进程的一些运行瓶颈点,可以通过该命令找到所有当前Thread的占用CPU的时间,也就是这里的最后一列。

比如这里找到了一个TID : 30834 ,所占用的TIME时间最高。

通过 printf "%x\n" 30834 首先转化成16进制, 继续通过jstack命令dump出当前的jvm进程的堆栈信息。 通过Grep命令即可以查到对应16进制的线程id信息,很快就可以找到对应最耗CPU的代码快在哪。

简单的解释下,jstack下这一串线程信息内容:

"DboServiceProcessor-4-thread-295" daemon prio=10 tid=0x00002aab047a9800 nid=0x7d9b waiting on condition [0x0000000046f66000]

nid : 对应的linux操作系统下的tid,就是前面转化的16进制数字

tid: 这个应该是jvm的jmm内存规范中的唯一地址定位,如果你详细分析jvm的一些内存数据时用得上,我自己还没到那种程度,所以先放下

top命令

命令:top -Hp pid

结果显示:

和前面的效果一下,你可以实时的跟踪并获取指定进程中最耗cpu的线程。 再用前面的方法提取到对应的线程堆栈信息。

判断I/O瓶颈

mpstat命令

命令:mpstat -P ALL 1 1000

结果显示:

注意一下这里面的%iowait列,CPU等待I/O操作所花费的时间。这个值持续很高通常可能是I/O瓶颈所导致的。

通过这个参数可以比较直观的看出当前的I/O操作是否存在瓶颈

iostat命令

命令: iostat -m -x 1 1000

同样你可以观察对应的CPU中的%iowait数据,除此之外iostat还提供了一些更详细的I/O状态数据,比如比较重要的有:

avgqu-sz : The average queue length of the requests that were issued to the device. (磁盘队列的请求长度,正常的话2,3比较好。可以和cpu的load一样的理解)

await : The average time (in milliseconds) for I/O requests issued to the device to be served. (代表一个I/O操作从wait到完成的总时间)

svctm和%util都是代表处理该I/O请求花费的时间和CPU的时间比例。 判断是否瓶颈时,这两个参数不是主要的

r/s w/s 和 rMB/s wMB/s 都是代表当前系统处理的I/O的一些状态,前者是我们常说的tps,后者就是吞吐量。这也是评价一个系统的性能指标

pid命令

命令: pidstat -p pid -u -d -t -w -h 1 1000

结果显示:

相当实用的一个命令,可以基于当个进程分析对应的性能数据,包括CPU,I/O,IR , CS等,可以方便开发者更加精细化的观察系统的运行状态。不过pidstat貌似是在2.6内核的一些较新的版本才有,需要安装sysstat包。

ubuntu下,可以通过sudo apt-get install sysstat进行安装。

sar命令

命令:sar -x pid 1 1000

sar也可以指定对应的pid,关注固定的几个参数,没有pidstat那么强大。 看不到对应的I/O, IR等信息。

sar的功能可以覆盖mpstat , iostat的相关功能。

dstat命令

命令:dstat -y --tcp 1 1000

通过dstat --tcp可以比较方便的看到当前的tcp的各种状态,不需要每次netstat -nat去看

其他命令

netstat -natp : 查看对应的网络链接,关注下Recv-Q , Send-Q , State。

lsof -p pid : 查找对应pid的文件句柄

lsof -i : 80 : 查找对应端口被哪个进程占用

lsof /tmp/1.txt :查找对应文件被哪个进程占用

tcpdump / wireshark :抓包分析工具

jstat / jmap / jstack / jps 等一系列的java监控命令

最后

如果你想做一些性能调优的工作,一定要善于利用一些工具进行关注相应的状态。通过linux命令你可以比较方便的观测到CPU , I/O , network等一些比较外围的状态, 很多时候就已经可以解决大部分的问题。jvm内部的一些运行状态监控,得需要借助一些特有的工具进行细粒度的观测。

linux上如何安装jstatd服务

此命令是一个RMI Server应用程序,提供了对JVM的创建和结束监视,也为远程监视工具提供了一个可以attach的接口

options

-nr 当一个存在的RMI Registry没有找到时,不尝试创建一个内部的RMI Registry

-p port 端口号,默认为1099

-n rminame 默认为JStatRemoteHost;如果多个jstatd服务开始在同一台主机上,rminame唯一确定一个jstatd服务

-J jvm选项

jstatd

会报如下错误:

Could not create remote object access denied (java.util.PropertyPermission java.rmi.server.ignoreSubClasses write) java.security.AccessControlException: access denied (java.util.PropertyPermission java.rmi.server.ignoreSubClasses write) at java.security.AccessControlContext.checkPermission(AccessControlContext.java:323) at java.security.AccessController.checkPermission(AccessController.java:546) at java.lang.SecurityManager.checkPermission(SecurityManager.java:532) at java.lang.System.setProperty(System.java:727) at sun.tools.jstatd.Jstatd.main(Jstatd.java:122)

这是因为没有给jstatd指定安全策略

创建安全策略文件,并命名为jstatd.all.policy

grant codebase "file:${java.home}/../lib/tools.jar" {

permission java.security.AllPermission;

};

再次启动

C:\Program Files\Java\jdk1.6.0_16\binjstatd -J-Djava.security.policy=jstatd.all.policy

利用jps查看正在运行的java命令

jps

C:\Documents and Settings\lulujps

4892 Bootstrap

1296 Jstatd

4484 Jps

3332 org.eclipse.equinox.launcher_1.0.201.R35x_v20090715.jar

此时就可以使用jvisualvm.exe以远程的方式监控JVM相关信息了。

更多例子

(1)使用内部RMI Registry

jstatd -J-Djava.security.policy=all.policy (默认端口为1099)

(2)使用外部RMI Registry

a)使用默认值

rmiregistry

jstatd -J-Djava.security.policy=all.policy

b)使用2020端口

rmiregistry 2020

jstatd -J-Djava.security.policy=all.policy -p 2020

c)使用2020端口,使用rminame

rmiregistry 2020

jstatd -J-Djava.security.policy=all.policy -p 2020 -n AlternateJstatdServerName

(3)RMI Registry已经启动,不创建内部RMI Registry

jstatd -J-Djava.security.policy=all.policy -nr

(4)RMI日志能力

jstatd -J-Djava.security.policy=all.policy -J-Djava.rmi.server.logCalls=true

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/14908.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

复现永恒之蓝[MS17_010]

目录 准备靶机 测试ping连通性 攻击漏洞 利用漏洞 准备靶机 1台kali,1台win7 win7系统可以在MSDN镜像网站里获取 注:将win7安装好,win7无法安装vmtools,若升级系统,可能会把永恒之蓝补丁打上,所以建议别升级系统 测试…

【SpringCloud常见面试题】

SpringCloud常见面试题 1.微服务篇1.1.SpringCloud常见组件有哪些?1.2.Nacos的服务注册表结构是怎样的?1.3.Nacos如何支撑阿里内部数十万服务注册压力?1.4.Nacos如何避免并发读写冲突问题?1.5.Nacos与Eureka的区别有哪些&#xff…

毕业设计 医学图像阅读器 DICOM CT MRI 阅读器 三维重建 可视化编程技术及应用

一、 概述 此系统实现了常见 VTK 四视图,实现了很好的 DICOM 图像显示,可用于 DICOM 超声 X线 CT MR 三维重建 拾取像素值 窗宽 窗位 像素,距离测量,角度测量,提供源码; 并且通过三维重建实现可视化。使用…

AttributeError: ‘ChatGLMModel‘ object has no attribute ‘prefix_encoder‘

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

**MySQL关联查询七种方式详解与应用实例**,你的掌握了吗

当我们需要从多个表中查询数据时,就需要使用关联查询了。MySQL支持七种不同类型的关联查询:内连接、左连接、右连接、全外连接、交叉连接、自连接和自然连接。本文将讲解这七种关联查询的SQL语句、示例以及应用场景。 一、 前言 关联查询是数据库操作中…

基于html+css的图展示42

准备项目 项目开发工具 Visual Studio Code 1.44.2 版本: 1.44.2 提交: ff915844119ce9485abfe8aa9076ec76b5300ddd 日期: 2020-04-16T16:36:23.138Z Electron: 7.1.11 Chrome: 78.0.3904.130 Node.js: 12.8.1 V8: 7.8.279.23-electron.0 OS: Windows_NT x64 10.0.19044 项目…

5.2.1二叉树的定义和基本术语

二叉树的基本概念: 二叉树是递归定义的二叉树 下面我们来看几个特殊的二叉树: 特点: 1)只有最后一层有叶子节点 2)不存在度为1的结点 3)按层序从1开始编号,结点i的左孩子为2i,右孩…

基于趋动云的chatGLM-6B模型的部署

首先根据官方示例教程,学会怎么创建项目,怎么使用数据,怎么进入开发环境,以及了解最重要的2个环境变量: 这个是进入开发环境以后的代码目录 $GEMINI_CODE 这个是引用数据集后,数据集存放的路径 $GEMINI_DA…

第十一章_SpringBoot集成Redis

总体概述 redisTemplate-jedis-lettuce-redission之间的的联系 1、redisTemplate是基于某个具体实现的再封装,比如说springBoot1.x时,具体实现是jedis;而到了springBoot2.x时,具体实现变成了lettuce。封装的好处就是隐藏了具体的…

【难学易用c++ 之 继承】

目录: 前言一、继承的概念及定义(一)概念(二)继承定义继承关系和访问限定符继承基类成员访问方式的变化 二、基类和派生类对象赋值转换三、继承中的作用域四、派生类的默认成员函数五、继承与友元六、继承与静态成员七…

WinScope实现录制视频与是Timeline时间轴同步设置方法-千里马framework车载手机系统开发实战

hi,粉丝朋友们! 背景: 今天来分享一个粉丝朋友提出的问题,那就是他在学习wms课程时候有用到winscope工具,提出一个疑问,就是google官网说的有录屏可以结合起来一起看。具体如下: 其实这个以…

小案例CSS

代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta http-equiv"X-UA-Compatible" content"IEedge"> <meta name"viewport" content"widthde…

什么是LVS

&#x1f618;作者简介&#xff1a;一名99年运维岗位员工。&#x1f44a;宣言&#xff1a;人生就是B&#xff08;birth&#xff09;和D&#xff08;death&#xff09;之间的C&#xff08;choise&#xff09;&#xff0c;做好每一个选择。&#x1f64f;创作不易&#xff0c;动动…

零售新时代,零售行业数字化破局的新路径

深夜11点&#xff0c;门店店长小张还在加班&#xff0c;因为小张还需要盘点今日销售额、库存等信息&#xff0c;这些整理好的数据需要手动录入至总公司的系统中。 多门店的零售行业中&#xff0c;这是他们每天的工作日常&#xff1a;门店先通过excel做手工报表&#xff0c;再把…

PowerShell批量修改、替换大量文件的文件名

本文介绍基于PowerShell语言&#xff0c;对文件夹中全部文件的名称加以批量替换、修改的方法。 在之前的文章基于Python一次性批量修改多个文件的文件名&#xff08;https://blog.csdn.net/zhebushibiaoshifu/article/details/115869725&#xff09;中&#xff0c;我们介绍了基…

Zynq-7000、FMQL45T900的GPIO控制(七)---linux驱动层配置GPIO中断输入

本文使用的驱动代码 (1条消息) FMQL45T900linux驱动外部中断输入ZYNQ-7000linux驱动外部中断输入资源-CSDN文库 在Zynq-7000、FMQL45T900驱动层也时常会用到对GPIO的控制&#xff0c;这里就针对实际使用的情况进行说明&#xff0c;首先根据之前的帖子确实使用GPIO编号 这里采…

VAE 理论推导及代码实现

VAE 理论推导及代码实现 熵、交叉熵、KL 散度的概念 熵&#xff08;Entropy) 假设 p (x&#xff09;是一个分布函数&#xff0c;满足在 x 上的积分为 1&#xff0c;那么 p ( x ) p(x) p(x)的熵定义为 H ( p ( x ) ) H (p (x)) H(p(x))&#xff0c;这里我们简写为 H ( p )…

干货!ICLR 2023 | 更稳定高效的因果发现方法-自适应加权

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入&#xff01; ╱ 个人简介╱ 张岸 新加坡国立大学NExT实验室博士后&#xff0c;主要研究Robust & Trustable AI。 个人主页&#xff1a;https://anzhang314.github.io/ 01 内容简介 可微分的因果发现方法&#xff0c;是从…

input 各类事件汇总触发时机触发顺序

今天梳理了一下input框的各类事件&#xff0c;简单介绍一下吧 目录 1.click 2.focus 3.blur 4.change 5.input 6.keydown 7.keyup 8.select 1.click 点击事件&#xff0c;简单易理解&#xff0c;点击触发&#xff0c;等下跟focus事件一起比较 2.focus 获取焦点事件…

每日学术速递4.24

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 Subjects: cs.CV 1.Collaborative Diffusion for Multi-Modal Face Generation and Editing(CVPR 2023) 标题&#xff1a;多模态人脸生成和编辑的协同扩散 作者&#xff1a;Ziqi Huang, Kelvin C.K. …