竞赛 题目:基于LSTM的预测算法 - 股票预测 天气预测 房价预测

文章目录

  • 0 简介
  • 1 基于 Keras 用 LSTM 网络做时间序列预测
  • 2 长短记忆网络
  • 3 LSTM 网络结构和原理
    • 3.1 LSTM核心思想
    • 3.2 遗忘门
    • 3.3 输入门
    • 3.4 输出门
  • 4 基于LSTM的天气预测
    • 4.1 数据集
    • 4.2 预测示例
  • 5 基于LSTM的股票价格预测
    • 5.1 数据集
    • 5.2 实现代码
  • 6 lstm 预测航空旅客数目
    • 数据集
    • 预测代码
  • 7 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于LSTM的预测算法 - 股票预测 天气预测 房价预测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 基于 Keras 用 LSTM 网络做时间序列预测

时间序列预测是一类比较困难的预测问题。

与常见的回归预测模型不同,输入变量之间的“序列依赖性”为时间序列问题增加了复杂度。

一种能够专门用来处理序列依赖性的神经网络被称为 递归神经网络(Recurrent Neural
Networks、RNN)。因其训练时的出色性能,长短记忆网络(Long Short-Term Memory
Network,LSTM)是深度学习中广泛使用的一种递归神经网络(RNN)。

在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建 LSTM 神经网络模型实现时间序列预测。

  • 如何为基于回归、窗口法和时间步的时间序列预测问题建立对应的 LSTM 网络。
  • 对于非常长的序列,如何在构建 LSTM 网络和用 LSTM 网络做预测时保持网络关于序列的状态(记忆)。

2 长短记忆网络

长短记忆网络,或 LSTM 网络,是一种递归神经网络(RNN),通过训练时在“时间上的反向传播”来克服梯度消失问题。

LSTM 网络可以用来构建大规模的递归神经网络来处理机器学习中复杂的序列问题,并取得不错的结果。

除了神经元之外,LSTM 网络在神经网络层级(layers)之间还存在记忆模块。

一个记忆模块具有特殊的构成,使它比传统的神经元更“聪明”,并且可以对序列中的前后部分产生记忆。模块具有不同的“门”(gates)来控制模块的状态和输出。一旦接收并处理一个输入序列,模块中的各个门便使用
S 型的激活单元来控制自身是否被激活,从而改变模块状态并向模块添加信息(记忆)。

一个激活单元有三种门:

  • 遗忘门(Forget Gate):决定抛弃哪些信息。
  • 输入门(Input Gate):决定输入中的哪些值用来更新记忆状态。
  • 输出门(Output Gate):根据输入和记忆状态决定输出的值。

每一个激活单元就像是一个迷你状态机,单元中各个门的权重通过训练获得。

3 LSTM 网络结构和原理

long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神

在这里插入图片描述

LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

在这里插入图片描述

不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。

在这里插入图片描述

在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise
的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

3.1 LSTM核心思想

LSTM的关键在于细胞的状态整个(如下图),和穿过细胞的那条水平线。

细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

在这里插入图片描述
门可以实现选择性地让信息通过,主要是通过一个 sigmoid 的神经层 和一个逐点相乘的操作来实现的。

在这里插入图片描述
sigmoid 层输出(是一个向量)的每个元素都是一个在 0 和 1 之间的实数,表示让对应信息通过的权重(或者占比)。比如, 0
表示“不让任何信息通过”, 1 表示“让所有信息通过”。

LSTM通过三个这样的本结构来实现信息的保护和控制。这三个门分别输入门、遗忘门和输出门。

3.2 遗忘门

在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取和,输出一个在 0到
1之间的数值给每个在细胞状态中的数字。1 表示“完全保留”,0 表示“完全舍弃”。

让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。

在这里插入图片描述
其中

在这里插入图片描述

表示的是 上一时刻隐含层的 输出,

在这里插入图片描述

表示的是当前细胞的输入。σ表示sigmod函数。

3.3 输入门

下一步是决定让多少新的信息加入到 cell 状态 中来。实现这个需要包括两个步骤:首先,一个叫做“input gate layer ”的 sigmoid
层决定哪些信息需要更新;一个 tanh 层生成一个向量,也就是备选的用来更新的内容。在下一步,我们把这两部分联合起来,对 cell 的状态进行一个更新。

在这里插入图片描述

3.4 输出门

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid
层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid
门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

在语言模型的例子中,因为他就看到了一个代词,可能需要输出与一个动词相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。

在这里插入图片描述

4 基于LSTM的天气预测

4.1 数据集

在这里插入图片描述

如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。

给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。

下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。

下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。

4.2 预测示例

多步骤预测模型中,给定过去的采样值,预测未来一系列的值。对于多步骤模型,训练数据再次包括每小时采样的过去五天的记录。但是,这里的模型需要学习预测接下来12小时的温度。由于每10分钟采样一次数据,因此输出为72个预测值。

future_target = 72
x_train_multi, y_train_multi = multivariate_data(dataset, dataset[:, 1], 0,
                                                 TRAIN_SPLIT, past_history,
                                                 future_target, STEP)
x_val_multi, y_val_multi = multivariate_data(dataset, dataset[:, 1],
                                             TRAIN_SPLIT, None, past_history,
                                             future_target, STEP)

划分数据集

train_data_multi = tf.data.Dataset.from_tensor_slices((x_train_multi, y_train_multi))
train_data_multi = train_data_multi.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()

val_data_multi = tf.data.Dataset.from_tensor_slices((x_val_multi, y_val_multi))
val_data_multi = val_data_multi.batch(BATCH_SIZE).repeat()

绘制样本点数据

def multi_step_plot(history, true_future, prediction):
    plt.figure(figsize=(12, 6))
    num_in = create_time_steps(len(history))
    num_out = len(true_future)

    plt.plot(num_in, np.array(history[:, 1]), label='History')
    plt.plot(np.arange(num_out)/STEP, np.array(true_future), 'bo',
           label='True Future')
    if prediction.any():
        plt.plot(np.arange(num_out)/STEP, np.array(prediction), 'ro',
                 label='Predicted Future')
    plt.legend(loc='upper left')
    plt.show()
for x, y in train_data_multi.take(1):
  multi_step_plot(x[0], y[0], np.array([0]))

在这里插入图片描述

此处的任务比先前的任务复杂一些,因此该模型现在由两个LSTM层组成。最后,由于需要预测之后12个小时的数据,因此Dense层将输出为72。

multi_step_model = tf.keras.models.Sequential()
multi_step_model.add(tf.keras.layers.LSTM(32,
                                          return_sequences=True,
                                          input_shape=x_train_multi.shape[-2:]))
multi_step_model.add(tf.keras.layers.LSTM(16, activation='relu'))
multi_step_model.add(tf.keras.layers.Dense(72))

multi_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(clipvalue=1.0), loss='mae')

训练

multi_step_history = multi_step_model.fit(train_data_multi, epochs=EPOCHS,
                                          steps_per_epoch=EVALUATION_INTERVAL,
                                          validation_data=val_data_multi,
                                          validation_steps=50)

在这里插入图片描述

在这里插入图片描述

5 基于LSTM的股票价格预测

5.1 数据集

股票数据总共有九个维度,分别是

在这里插入图片描述

5.2 实现代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
plt.rcParams['font.sans-serif']=['SimHei']#显示中文
plt.rcParams['axes.unicode_minus']=False#显示负号

def load_data():
    test_x_batch = np.load(r'test_x_batch.npy',allow_pickle=True)
    test_y_batch = np.load(r'test_y_batch.npy',allow_pickle=True)
    return (test_x_batch,test_y_batch)

#定义lstm单元
def lstm_cell(units):
    cell = tf.contrib.rnn.BasicLSTMCell(num_units=units,forget_bias=0.0)#activation默认为tanh
    return cell

#定义lstm网络
def lstm_net(x,w,b,num_neurons):
    #将输入变成一个列表,列表的长度及时间步数
    inputs = tf.unstack(x,8,1)
    cells = [lstm_cell(units=n) for n in num_neurons]
    stacked_lstm_cells = tf.contrib.rnn.MultiRNNCell(cells)
    outputs,_ =  tf.contrib.rnn.static_rnn(stacked_lstm_cells,inputs,dtype=tf.float32)
    return tf.matmul(outputs[-1],w) + b

#超参数
num_neurons = [32,32,64,64,128,128]

#定义输出层的weight和bias
w = tf.Variable(tf.random_normal([num_neurons[-1],1]))
b = tf.Variable(tf.random_normal([1]))

#定义placeholder
x = tf.placeholder(shape=(None,8,8),dtype=tf.float32)

#定义pred和saver
pred = lstm_net(x,w,b,num_neurons)
saver = tf.train.Saver(tf.global_variables())

if __name__ == '__main__':

    #开启交互式Session
    sess = tf.InteractiveSession()
    saver.restore(sess,r'D:\股票预测\model_data\my_model.ckpt')

    #载入数据
    test_x,test_y = load_data()

    #预测
    predicts = sess.run(pred,feed_dict={x:test_x})
    predicts = ((predicts.max() - predicts) / (predicts.max() - predicts.min()))#数学校准

    #可视化
    plt.plot(predicts,'r',label='预测曲线')
    plt.plot(test_y,'g',label='真实曲线')
    plt.xlabel('第几天/days')
    plt.ylabel('开盘价(归一化)')
    plt.title('股票开盘价曲线预测(测试集)')
    plt.legend()
	plt.show()
    #关闭会话
    sess.close()	

在这里插入图片描述

6 lstm 预测航空旅客数目

数据集

airflights passengers dataset下载地址

https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-
passengers.csv

这个dataset包含从1949年到1960年每个月的航空旅客数目,共12*12=144个数字。

下面的程序中,我们以1949-1952的数据预测1953的数据,以1950-1953的数据预测1954的数据,以此类推,训练模型。

预测代码

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
import os
 
# super parameters
EPOCH = 400
learning_rate = 0.01
seq_length = 4   # 序列长度
n_feature = 12   # 序列中每个元素的特征数目。本程序采用的序列元素为一年的旅客,一年12个月,即12维特征。
 
# data
data = pd.read_csv('airline-passengers.csv')   # 共 "12年*12个月=144" 个数据
data = data.iloc[:, 1:5].values        # dataFrame, shape (144,1)
data = np.array(data).astype(np.float32)
sc = MinMaxScaler()
data = sc.fit_transform(data)          # 归一化
data = data.reshape(-1, n_feature)     # shape (12, 12)
 
trainData_x = []
trainData_y = []
for i in range(data.shape[0]-seq_length):
    tmp_x = data[i:i+seq_length, :]
    tmp_y = data[i+seq_length, :]
    trainData_x.append(tmp_x)
    trainData_y.append(tmp_y)
 
# model
class Net(nn.Module):
    def __init__(self, in_dim=12, hidden_dim=10, output_dim=12, n_layer=1):
        super(Net, self).__init__()
        self.in_dim = in_dim
        self.hidden_dim = hidden_dim
        self.output_dim = output_dim
        self.n_layer = n_layer
        self.lstm = nn.LSTM(input_size=in_dim, hidden_size=hidden_dim, num_layers=n_layer, batch_first=True)
        self.linear = nn.Linear(hidden_dim, output_dim)
 
    def forward(self, x):
        _, (h_out, _) = self.lstm(x)  # h_out是序列最后一个元素的hidden state
                                      # h_out's shape (batchsize, n_layer*n_direction, hidden_dim), i.e. (1, 1, 10)
                                      # n_direction根据是“否为双向”取值为1或2
        h_out = h_out.view(h_out.shape[0], -1)   # h_out's shape (batchsize, n_layer * n_direction * hidden_dim), i.e. (1, 10)
        h_out = self.linear(h_out)    # h_out's shape (batchsize, output_dim), (1, 12)
        return h_out
 
train = True
if train:
    model = Net()
    loss_func = torch.nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    # train
    for epoch in range(EPOCH):
        total_loss = 0
        for iteration, X in enumerate(trainData_x):  # X's shape (seq_length, n_feature)
            X = torch.tensor(X).float()
            X = torch.unsqueeze(X, 0)                # X's shape (1, seq_length, n_feature), 1 is batchsize
            output = model(X)       # output's shape (1,12)
            output = torch.squeeze(output)
            loss = loss_func(output, torch.tensor(trainData_y[iteration]))
            optimizer.zero_grad()   # clear gradients for this training iteration
            loss.backward()         # computing gradients
            optimizer.step()        # update weights
            total_loss += loss
 
        if (epoch+1) % 20 == 0:
            print('epoch:{:3d}, loss:{:6.4f}'.format(epoch+1, total_loss.data.numpy()))
    # torch.save(model, 'flight_model.pkl')  # 这样保存会弹出UserWarning,建议采用下面的保存方法,详情可参考https://zhuanlan.zhihu.com/p/129948825
    torch.save({'state_dict': model.state_dict()}, 'checkpoint.pth.tar')
 
else:
    # model = torch.load('flight_model.pth')
    model = Net()
    checkpoint = torch.load('checkpoint.pth.tar')
    model.load_state_dict(checkpoint['state_dict'])
 
# predict
model.eval()
predict = []
for X in trainData_x:             # X's shape (seq_length, n_feature)
    X = torch.tensor(X).float()
    X = torch.unsqueeze(X, 0)     # X's shape (1, seq_length, n_feature), 1 is batchsize
    output = model(X)             # output's shape (1,12)
    output = torch.squeeze(output)
    predict.append(output.data.numpy())
 
# plot
plt.figure()
predict = np.array(predict)
predict = predict.reshape(-1, 1).squeeze()
x_tick = np.arange(len(predict)) + (seq_length*n_feature)
plt.plot(list(x_tick), predict, label='predict data')
 
data_original = data.reshape(-1, 1).squeeze()
plt.plot(range(len(data_original)), data_original, label='original data')
 
plt.legend(loc='best')
plt.show()

运行结果

在这里插入图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/147722.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PieCloudDB Database 自研内存管理器 ASanAlloc:为产品质量保驾护航

内存管理是计算机科学中至关重要的一部分,它涉及到操作系统、硬件和软件应用之间的动态交互。有效的内存管理可以确保系统的稳定性和安全性,提高系统运行效率,帮助我们最大限度地利用有效的内存资源,合理分配和回收内存&#xff0…

【Linux】进程替换|exec系列函数

文章目录 一、看一看单进程版的进程替换二、进程替换的原理三、多进程版——验证各种程序替换接口exec系列函数execlexeclpexecvexecvp tipsexecleexecve 四、总结 一、看一看单进程版的进程替换 #include<stdio.h> #include<unistd.h> #include<stdlib.h>i…

Elasticsearch的配置学习笔记

文/朱季谦 Elasticsearch是一个基于Lucene的搜索服务器。它提供一个分布式多用户能力的全文搜索引擎&#xff0c;基于RESTful web接口&#xff0c;Elasticsearch是用Java语言开发的。 关于Elasticsearch系列笔记&#xff0c;主要从Elasticsearch的配置、核心组件、架构设计、使…

跟着 Tubi 同事吃遍全世界

在过去的一年里&#xff0c;Tubi 北京办公室的 Pantry 非常忙&#xff0c;忙于接收 Tubi 同事从全球各地带回的美食。而我们也有幸跟随慷慨的同事们尝遍了大江南北的味道。 细数这 30 多次美食分享&#xff0c;我们发现&#xff0c;大家分享的不仅是食物&#xff0c;还是…… …

第二证券:尾盘选股方法?

股票出资是一种危险较高的出资办法&#xff0c;因而怎样挑选合适的股票成为出资者面临的重要问题之一。尾盘选股办法就是一种常用的战略。尾盘是指股票商场生意时间的究竟一段时间&#xff0c;通常是下午3点到收盘之间。在这段时间里&#xff0c;生意量较大&#xff0c;不坚决性…

在Python中使用sqlite3进行数据持久化操作

目录 引言 一、安装sqlite3模块 二、创建数据库连接 三、创建游标对象 四、执行SQL命令 五、提交更改 六、关闭连接 七、使用参数化查询 八、使用ORM进行数据操作 九、备份和恢复数据库 十、处理大量数据 十一、优化查询性能 十二、处理并发访问 十三、处理数据持…

仿真算法收敛与初值的关系

问题&#xff1a; 当电路中存在大电容时&#xff0c;由于初值设置不合理可能导致的仿真算法不收敛的问题。 解决方法&#xff1a;设置初始节点值。 疑问&#xff1a;Node set和Initial Condition的区别。 [求助] node set 和initial condition有很么区别呢&#xff1f; 注&…

7-4链表去重

题目 给定一个带整数键值的链表 L&#xff0c;你需要把其中绝对值重复的键值结点删掉。即对每个键值 K&#xff0c;只有第一个绝对值等于 K 的结点被保留。同时&#xff0c;所有被删除的结点须被保存在另一个链表上。例如给定 L 为 21→-15→-15→-7→15&#xff0c;你需要输出…

前端算法面试之堆排序-每日一练

如果对前端八股文感兴趣&#xff0c;可以留意公重号&#xff1a;码农补给站&#xff0c;总有你要的干货。 今天分享一个非常热门的算法--堆排序。堆的运用非常的广泛&#xff0c;例如&#xff0c;Python中的heapq模块提供了堆排序算法&#xff0c;可以用于实现优先队列&#xf…

C/C++ stm32基础知识超详细讲解(系统性学习day14)

目录 前言 一、ARM和STM32是什么&#xff1f; 二、STM32的开发方式 三、GPIO----寄存器开发方式 1.八种输入输出模式分析 2.寄存器 四、stm32芯片图片 五、怎么学好stm32 总结 前言 stm32的广泛含义及背景&#xff1a; STM32是一款由意法半导体&#xff08;ST&…

mmdetection安装与训练

一、什么是mmdetection 商汤科技&#xff08;2018 COCO 目标检测挑战赛冠军&#xff09;和香港中文大学最近开源了一个基于Pytorch实现的深度学习目标检测工具箱mmdetection&#xff0c;支持Faster-RCNN&#xff0c;Mask-RCNN&#xff0c;Fast-RCNN等主流的目标检测框架&#…

前端js面试题 (四)

文章目录 ES6新增的proxy手写&#xff0c;proxy访问某对象输出别的数字深度拷贝&#xff0c;为啥无法使用JSON.parse(JSON.stringify(obj))异步编程有哪些&#xff0c;async await来由&#xff0c;本质原理是什么事件队列输出题第一题第二题第三题 粘性布局的原理&#xff0c;以…

Live800:2023年客服团队管理有哪些思路和方法?

在数字化时代&#xff0c;客服团队成为企业与客户之间的重要桥梁。随着技术不断发展&#xff0c;客服团队管理也在不断进化。到了2023年&#xff0c;最新的客服团队管理将会有哪些思路和方法呢&#xff1f; 一、智能化客服系统 随着人工智能技术的不断发展&#xff0c;智能化客…

redis-5.0.8主从集群搭建、不重启修改配置文件

一、环境准备 192.168.5.100 redis-01 192.168.5.101 redis-02 192.168.5.102 redis-03 关闭防火墙、能够通网 二、安装redis [rootlocalhost ~]# wget http://download.redis.io/releases/redis-5.0.8.tar.gz [rootlocalhost ~]# tar xf redis-5.0.8.tar.gz -C /usr/loca…

2023.11.15 hive sql之函数标准,字符串,日期,数学函数

目录 一.函数分类标准 二.查看官方函数,与简单演示 三.3种类型函数演示 四.字符串函数 1.常见字符串函数 2.索引函数 解析函数 五.日期函数 1.获取当前时间 2.获取日期相关 3.周,季度等计算 4.时间戳 六.数学函数 一.函数分类标准 目前hive三大标准 UDF:&#xff08…

十大适合外贸企业邮箱的Gmail替代品推荐

电子邮件仍然是许多人选择的媒介&#xff0c;因为它是交换信息的最可靠和正式的方法。无论是个人还是小型企业&#xff0c;电子邮件仍然是个人和专业用途的重要通信工具。它提供了一种安全、可靠且正式的方法来交换信息和文档以及共享文件。 对于大多数人来说&#xff0c;Googl…

RT-Thread STM32F407 DMA

这里以串口的DMA方式接收为例&#xff0c;串口1进行调试&#xff0c;串口2进行DMA接收 第一步&#xff0c;进入RT-Thread Settings配置DMA 第二步&#xff0c;进入board.h&#xff0c;定义串口及DMA宏 第三步&#xff0c;回到main.c&#xff0c;配置串口及DMA模式 第四步…

uniapp开发ios上线(在win环境下使用三方)

苹果 1、win环境下无法使用苹果os编译器所以使用第三方上传工具&#xff0c;以下示例为 初雪云 &#xff08;单次收费&#xff0c;一元一次&#xff09; 初雪云&#xff08;注册p12证书&#xff09;&#xff1a;https://www.chuxueyun.com/#/pages/AppleCertificate 苹果开发者…

将ECharts图表插入到Word文档中

文章目录 在后端调用JS代码准备ECharts库生成Word文档项目地址库封装本文示例 EChartsGen_DocTemplateTool_Sample 如何通过ECharts在后台生成图片&#xff0c;然后插入到Word文档中&#xff1f; 首先要解决一个问题&#xff1a;总所周知&#xff0c;ECharts是前端的一个图表库…