解析数据洁净之道:BI中数据清理对见解的深远影响

本文由葡萄城技术团队发布。转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具、解决方案和服务,赋能开发者。

前言

随着数字化和信息化进程的不断发展,数据已经成为企业的一项不可或缺的重要资源。然而,这些数据往往是庞大的、复杂的,甚至掺杂着很多的无效的、错误的数据。那么如何在这些数据中过滤那些干扰项,保证数据发挥最大的作用呢?仅仅靠人工和常规数据分析方法,已经不能满足当前的需要,因此,商业智能(BI)工具应运而生。BI工具帮助快速的进行数据清洗、建模和分析,降低脏数据对系统的影响,保证数据的准确、干净,将原始、混乱的数据转化为可靠的资产,帮我在发展中取得优势。

脏数据的危害

脏数据指的是无效、出现偏差和没有实际意义的数据,通过这些数据,无法得到有效的信息。随着数据收集方式的多样化,收集到的数据缺乏统一的标准化格式。而且通常伴随下列的问题:

  1. 脏数据导致结果错误

原始数据中的错误会通过后期的数据分析、使用,进而得到错误的结果,依据这种结果做出的决策和发展方向,必将导致更大的错误和失败。

2.脏数据使得数据整合困难

不同的数据定义、类型、格式在进行数据整合时,将会是巨大的灾难,需要花费绝大部分的精力和时间来对数据进行处理,以确保能够正常的使用,并且收集到新的数据时,必须重复的进行这种费力且无意义的工作。

3.脏数据造成视觉盲区

不同的数据定义和使用,必定存在着差异,而这种差异最直接的体现就是信息的丢失和局限,从这种数据得到的结果,具有很大的误导性和局限性,导致企业丧失对市场的洞察力,进一步导致决策和发展上的失误。

4.脏数据导致数据衰减

收集到的数据会由于各种原因,出现过时、遗失和损坏,并且随着时间的推移,这种现象会逐步加剧。而面对如此庞大的数据,有针对性的筛选和清洗,才能最大程度上地保证数据的价值。

干净数据的价值

干净的数据就是对原始数据进行清洗之后的有效数据。干净的数据能够帮助企业更加准确真实地了解客户、产品和市场情况。帮助企业作出更加有力的决策,干净数据拥有以下几点优势:

  1. 方便管理

经过清洗的数据,格式统一、意义明确,更容易进行管理、储存和使用。而且,数据中难免会有敏感、隐私数据,而经过清洗的标准化的数据,可以更加合法合规的进行实时处理使用。

2.指导决策

干净的数据可以实现可信的分析,经过验证,清理之后的干净数据,就为BI工具的数据模型和分析打下坚实的基础,帮助决策者了解真实情况,从而作出更符合发展的决定。

3.避免冲突

对于企业内部来说,所有的决策和意见都会基于高质量的数据来进行,从更加全面的视角来进行判断,避免了人员之间由于数据孤立导致的冲突。

4.竞争优势

高质量、干净的数据提供了竞争优势。企业可以获得改进的商业智能,方便运营和作出更明智的决策。高可信的数据能在各个方面为企业的发展决策提供数据支持,以数据驱动企业发展,降低成本,提升效率。

准确、整洁的数据对于公司的决策和发展具有极其重要的意义。通过严谨的数据清理流程和先进的BI分析工具,我们能够将原始、杂乱无章的数据转化为可信赖的有价值资产,从而帮助公司获得竞争优势。

优秀的BI解决方案

葡萄城公司的嵌入式BI工具——Wyn商业智能是一种实时BI解决方案,能够快速地实现数据整合、过滤清洗和智能分析。其优秀的自助式BI设计,能够有效地降低数据分析对专业人员的依赖,开箱即用,让专业的人员能够专注于更高级别的工作。特色的嵌入式分析,能够将数据分析结果无缝集成到客户自己的系统中,打通数据孤岛,从多个数据源出发,得到最真实直观的数据分析结果。

Wyn商业智能拥有以下几个特点:

  1. 全面的数据源支持

Wyn 支持当前市面上几乎所有的数据管理产品,包括关系型数据库Oracle、Mysql、SqlServer,非关系型数据库MongoDB、Redis,文件型数据库Excel、JSON等等。即使是没有内置到系统中的数据库,也可以通过ODATA的方式接入使用。

​ 2.多样化的建模方式

针对不同的使用场景提供了多样的建模方式,能够保证各种场景下的正常使用。

  • 在BI大屏设计上,提供了多种建模方式,抽取模型能够满足跨数据源数据分析、直连模型满足了对数据实时性的要求。更有其他多种类型的数据建模,全方位满足客户的分析场景。

  • 在报表展示上有直连数据库的直连数据集,跨数据源缓存分析的缓存数据集,更有支持通过接口推送数据的推送数据集和流式数据集,能够满足绝大多数场景下的数据接入和分析。

​ 3.强大的数据展示能力

前面介绍了数据接入、数据清洗和数据建模,wyn的数据展示分为BI仪表板和报表两种。设计完成之后可以适配PC端、电视大屏和手机移动端等多种场景,真正地一次设计,处处运行。

  • BI仪表板,内置了丰富图表组件,如柱形图、饼图、水球图,可以快速的设计出使用的BI大屏

  • 7.0版本中,在可视化组件的基础上,引入了Echarts 插件,可以更加方便快捷的开发自己的图标样式效果

  • 至于报表,则在内部集成了多种多样的效果组件,常规的表格、二维表格统计的矩表、图片、条形码、富文本等等,帮助制作出实用又漂亮的报表。

Wyn使用案例

下面小编将为大家介绍一个基于数据源支持、建模和数据展示的例子:

1.数据连接

数据连接是所有数据分析之前都必须经历的重要步骤,在 Wyn 上这一步就是创建数据源。前面说过Wyn支持绝大多数的数据源,我们这里用 Mysql 数据库来创建我们的数据源。

  1. 创建 Mysql 数据源

在 Wyn 中通过"创建文档–>数据源",就进入了数据源创建页面,在页面中找到 Mysql 数据库:

在创建时,可以直接在UI界面直接录入连接信息,非常地方便,

如果不习惯通过UI的方式连接,或者有一些特殊的配置,我们也可以通过连接字符进行连接:

信息录入完毕之后,可以通过左下角的"测试数据连接"来校验信息是否正确,是否可以正确连接到数据源

如果不成功,就返回检查信息,连接成功,则创建数据源。

创建完成之后,就可以看到数据源中的数据了:

2.数据准备

数据的准备过程是对分散、异构的数据进行一定的整合加工,从而形成可以用于数据分析和展示的数据集或模型。对于仪表板和报表的不同场景,Wyn 中有直连模型、抽取模型、直连数据集、缓存数据集、原生查询数据集、流式数据集以及推送数据集等多种类型。

  1. 抽取模型

抽取模型支持跨源抽取数据并建模,数据存储在本地的数据仓库中,以获得更快的分析速度和性能表现。模型中的各个表是"星"型结构,各个表之间通过字段进行关联,类似于数据库中的主外键关联。

​ 2.缓存数据集

缓存数据集提供跨源数据查询并创建数据集,数据以缓存和刷新计划的方式进行同步,常用于数据实时性要求不高的分析场景。数据集的结果是一个"宽表"结构,相当于数据库中的左关联、右关联。所有的数据全部显示在一个表上

3.数据展示

  1. 仪表板

Wyn 的仪表板可以理解成一块画布,将多个可视化组件按照一定的逻辑在这个画布上进行排布,从而形成具有实际意义的数据看板。在进行数据分析的同时,具备非常优秀的视觉效果。

​ 2.报表

报表是现代企业信息化不可缺少的统计分析工具,它主要用来实现企业内相对固定的资金日报、销售周报、财务月报以及关键数据的统计分析等较为细致的数据展示分析。报表使用类似 Office 的工作模式,功能强大,简单易学。仅需通过简单的拖拽操作便可以设计出具有复杂表头的表格类报表、参数查询报表、动态数据生成的多维交叉报表、布局灵活的表单类报表和图文混排的自定义报表等应用于各种需求场景的报表。

总结

在商业智能(BI)中,数据清理对于发现有价值的见解和作出正确决策至关重要。它不仅提高数据的准确性和可靠性,还帮助发现隐藏的模式和异常情况,提高数据的一致性和可比性,并保护数据的安全和隐私。因此,数据清理是BI过程中不可或缺的环节,值得组织和分析师们充分重视和投入精力进行数据清理工作,以获得更加准确、有意义的见解和更好的决策支持,如果您想了解更多关于BI数据清理的资料,欢迎点击这里。

扩展链接:

Redis从入门到实践

一节课带你搞懂数据库事务!

Chrome开发者工具使用教程

从表单驱动到模型驱动,解读低代码开发平台的发展趋势

低代码开发平台是什么?

基于分支的版本管理,帮助低代码从项目交付走向定制化产品开发

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/147330.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

0基础学习VR全景平台篇第121篇:认识视频剪辑软件Premiere

上课!全体起立~ 大家好,欢迎观看蛙色官方系列全景摄影课程! 大家好,这节课是带领大家认识认识我们的剪辑软件Premiere,一般简称是PR。 (PR界面) 我们首先打开PR,第一步就是要创建…

滚雪球学Java(64):LinkedHashSet原理及实现解析

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE相关知识点了,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好…

【数据结构】堆(Heap):堆的实现、堆排序、TOP-K问题

目录 堆的概念及结构 ​编辑 堆的实现 实现堆的接口 堆的初始化 堆的打印 堆的销毁 获取最顶的根数据 交换 堆的插入(插入最后) 向上调整(这次用的是小堆) 堆的删除(删除根) 向下调整(这次用的…

dgl 的cuda 版本 环境配置(dgl cuda 版本库无法使用问题解决)

1. 如果你同时有dgl dglcu-XX.XX 那么,应该只会运行dgl (DGL的CPU版本),因此,你需要把dgl(CPU)版本给卸载了 但是我只卸载CPU版本还不够,我GPU 版本的dglcu依旧不好使,因此吧GPU版本的也得卸载…

Python武器库开发-flask篇之路由和视图函数(二十二)

flask篇之路由和视图函数(二十二) 通过创建路由并关联函数,实现一个基本的网页: #!/usr/bin/env python3 from flask import Flask# 用当前脚本名称实例化Flask对象,方便flask从该脚本文件中获取需要的内容 app Flask(__name__)#程序实例需…

2.5 Windows驱动开发:DRIVER_OBJECT对象结构

在Windows内核中,每个设备驱动程序都需要一个DRIVER_OBJECT对象,该对象由系统创建并传递给驱动程序的DriverEntry函数。驱动程序使用此对象来注册与设备对象和其他系统对象的交互,并在操作系统需要与驱动程序进行交互时使用此对象。DRIVER_OB…

云服务器如何选?腾讯云2核2G3M云服务器88元一年!

作为一名程序员,在选择云服务器时,我们需要关注几个要点:网络稳定性、价格以及云服务商的规模。这些要素将直接影响到我们的使用体验和成本效益。接下来,我将为大家推荐一款性价比较高的轻应用云服务器。 腾讯云双11活动 腾讯云…

vue-组件通信(动态组件)

​🌈个人主页:前端青山 🔥系列专栏:Vue篇 🔖人终将被年少不可得之物困其一生 依旧青山,本期给大家带来vue篇专栏内容:vue-组件通信|动态组件 目录 组件通信 1.父传子 2.子传父 3.ref 4.兄弟组件 5.跨层级 provid…

Git用pull命令后再直接push有问题

在gitlab新建一个项目&#xff0c;然后拉取到本地&#xff0c;用&#xff1a; git init git pull <远程主机名> 然后就是在本地工作区增加所有文件及文件夹。再添加、提交&#xff0c;都没问题&#xff1a; 但是&#xff0c;git push出问题&#xff1a; 说明本地仓库和…

手把手带你学习 JavaScript 的 ES6 ~ ESn

文章目录 一、引言二、了解 ES6~ESn 的新特性三、掌握 ES6~ESn 的用法和实现原理四、深入挖掘和拓展《深入理解现代JavaScript》编辑推荐内容简介作者简介精彩书评目录 一、引言 JavaScript 是一种广泛使用的网络编程语言&#xff0c;它在前端开发中扮演着重要角色。随着时间的…

3类主流的车道检测AI模型

2014年的一天&#xff0c;我舒舒服服地躺在沙发上&#xff0c;看着我和加拿大朋友租的豪华滑雪别墅的篝火营地&#xff0c;突然&#xff0c;一个东西出现在我的视野里&#xff1a; “着火了&#xff01;着火了&#xff01;着火了&#xff01;” 我大喊。 几秒钟之内&#xff…

基于springboot实现学生选课平台管理系统项目【项目源码】计算机毕业设计

基于springboot实现学生选课平台管理系统演示 系统开发平台 在该地方废物回收机构管理系统中&#xff0c;Eclipse能给用户提供更多的方便&#xff0c;其特点一是方便学习&#xff0c;方便快捷&#xff1b;二是有非常大的信息储存量&#xff0c;主要功能是用在对数据库中查询和…

方阵的施密特正交化与相似对角化

方阵的施密特正交化与相似对角化 施密特正交化 施密特正交化步骤 example 略 相似对角化 相似对角化步骤 step1: step2: step3: step4: example 注:特征值的个数与秩无关 A {{-3, 6}, {-10, 6}}; Eigenvalues[A] V Eigenvectors[A]; P {V[[1]], V[[2]]}; P Transpo…

Xilinx Zynq 7000系列中端FPGA解码MIPI视频,基于MIPI CSI-2 RX Subsystem架构实现,提供5套工程源码和技术支持

目录 1、前言免责声明 2、我这里已有的 MIPI 编解码方案3、本 MIPI CSI2 模块性能及其优缺点4、详细设计方案设计原理框图OV5640及其配置权电阻硬件方案MIPI CSI-2 RX SubsystemSensor Demosaic图像格式转换Gammer LUT伽马校正VDMA图像缓存AXI4-Stream toVideo OutHDMI输出 5、…

Redis 事务是什么?又和MySQL事务有什么区别?

目录 1. Redis 事务的概念 2. Redis 事务和 MySQL事务的区别&#xff1f; 3. Redis 事务常用命令 1. Redis 事务的概念 下面是在 Redis 官网上找到的关于事务的解释&#xff0c;这里划重点&#xff0c;一组命令&#xff0c;一个步骤。 也就是说&#xff0c;在客户端与 Redi…

Python | 机器学习之聚类算法

​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《人工智能奇遇记》&#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 目录结构 1. 机器学习之聚类算法概念 1.1 机器学习 1.2 聚类算法 2. 聚类算法 2.1 实验目的…

Vue.js的生命周期钩子

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

GPT 学习法:恐怖算力 + 精确算法,实现复杂文献轻松的完美理解、在庞大的不确性中找到确定性

GPT 学习法&#xff1a;恐怖算力 精确算法&#xff0c;实现复杂文献轻松的完美理解、在庞大的不确性中找到确定性 复杂文献 - 恐怖算力 精确算法&#xff0c;复杂文献轻松的完美理解GPT 理解法 - 举例子、归纳、逻辑链推导本质、图示、概念放大器实战案例&#xff1a;学习高精…

DDR3内容相关

1、DDR3 全称第三代双倍速率同步动态随机存储器。 特点&#xff1a;①掉电无法保存数据&#xff0c;需要周期性的刷新。②时钟上升沿和下降沿都 会传输数据。③突发传输&#xff0c;突发长度 Burst Length 一般为 8。 2、DDR3 的存储&#xff1a;bank、行地址和列地址 数据怎么…

使用 Redis 构建轻量的向量数据库应用:图片搜索引擎(一)

本篇文章聊聊更轻量的向量数据库方案&#xff1a;Redis。 以及基于 Redis 来快速实现一个高性能的本地图片搜索引擎&#xff0c;在本地环境中&#xff0c;使用最慢的稠密向量检索方式来在一张万图片中查找你想要的图片&#xff0c;总花费时间都不到十分之一秒。 写在前面 接着…