threejs(13)-着色器设置点材质

在这里插入图片描述

着色器材质内置变量

three.js着色器的内置变量,分别是

  1. gl_PointSize:在点渲染模式中,控制方形点区域渲染像素大小(注意这里是像素大小,而不是three.js单位,因此在移动相机是,所看到该点在屏幕中的大小不变)
  2. gl_Position:控制顶点选完的位置
  3. gl_FragColor:片元的RGB颜色值
  4. gl_FragCoord:片元的坐标,同样是以像素为单位
  5. gl_PointCoord:在点渲染模式中,对应方形像素坐标

他们或者单个出现在着色器中,或者组团出现在着色器中,是着色器的灵魂。下面来分别说一说他们的意义和用法。

  1. gl_PointSize

gl_PointSize内置变量是一个float类型,在点渲染模式中,顶点由于是一个点,理论上我们并无法看到,所以他是以一个正对着相机的正方形面表现的。使用内置变量gl_PointSize主要是用来设置顶点渲染出来的正方形面的相素大小(默认值是0)。

void main() {   gl_PointSize = 10.0}
  1. gl_Position

gl_Position内置变量是一个vec4类型,它表示最终传入片元着色器片元化要使用的顶点位置坐标。vec4(x,y,z,1.0),前三个参数表示顶点的xyz坐标值,第四个参数是浮点数1.0。

void main() {     gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); }
  1. gl_FragColor

gl_FragColor内置变量是vec4类型,主要用来设置片元像素的颜色,它的前三个参数表示片元像素颜色值RGB,第四个参数
是片元像素透明度A,1.0表示不透明,0.0表示完全透明。

void main() {     gl_FragColor = vec4(1.0,0.0,0.0,1.0); }
  1. gl_FragCoord

gl_FragCoord内置变量是vec2类型,它表示WebGL在canvas画布上渲染的所有片元或者说像素的坐标,坐标原点是canvas画布的左上角,x轴水平向右,y竖直向下,gl_FragCoord坐标的单位是像素,gl_FragCoord的值是vec2(x,y),通过gl_FragCoord.x、gl_FragCoord.y方式可以分别访问片元坐标的纵横坐标。这里借了一张图
在这里插入图片描述
下面我们举个例子

fragmentShader: `
    void main() {
        if(gl_FragCoord.x < 600.0) {
            gl_FragColor = vec4(1.0,0.0,0.0,1.0);
        } else {
            gl_FragColor = vec4(1.0,1.0,0.0,1.0);
        }
    }
`

在这里插入图片描述
这里以600像素为分界,x值小于600像素的部分,材质被渲染成红色,大于的部分为黄色。

  1. gl_PointCoord

gl_PointCoord内置变量也是vec2类型,同样表示像素的坐标,但是与gl_FragCoord不同的是,gl_FragCoord是按照整个canvas算的x值从[0,宽度],y值是从[0,高度]。而gl_PointCoord是在点渲染模式中生效的,而它的范围是对应小正方形面,同样是左上角[0,0]到右下角[1,1]。

  1. 内置变量练习

五个内置变量我们都大致的说了一遍,下面用一个小案例来试用一下除了gl_FragCoord的其他四个。先上图,

在这里插入图片描述

var planeGeom = new THREE.PlaneGeometry(1000, 1000, 100, 100);
uniforms = {
    time: {
        value: 0
    }
}
var planeMate = new THREE.ShaderMaterial({
    transparent: true,
    side: THREE.DoubleSide,
    uniforms: uniforms,
    vertexShader: `
                uniform float time;
        void main() {
            float y = sin(position.x / 50.0 + time) * 10.0 + sin(position.y / 50.0 + time) * 10.0;
            vec3 newPosition = vec3(position.x, position.y, y * 2.0 );
            gl_PointSize = (y + 20.0) / 4.0;
            gl_Position = projectionMatrix * modelViewMatrix * vec4( newPosition, 1.0 );
        }
    `,
    fragmentShader: `
        void main() {
            float r = distance(gl_PointCoord, vec2(0.5, 0.5));
            if(r < 0.5) {
                gl_FragColor = vec4(0.0,1.0,1.0,1.0);
            }
        }
    `
})
var planeMesh = new THREE.Points(planeGeom, planeMate);
planeMesh.rotation.x = - Math.PI / 2;
scene.add(planeMesh);

案例-星云

在这里插入图片描述
src/main/main.js

import * as THREE from "three";

import { OrbitControls } from "three/examples/jsm/controls/OrbitControls";
import fragmentShader from "../shader/basic/fragmentShader.glsl";
import vertexShader from "../shader/basic/vertexShader.glsl";
// 目标:打造一个旋转的银河系
// 初始化场景
const scene = new THREE.Scene();

// 创建透视相机
const camera = new THREE.PerspectiveCamera(
  75,
  window.innerHeight / window.innerHeight,
  0.1,
  1000
);
// 设置相机位置
// object3d具有position,属性是1个3维的向量
camera.aspect = window.innerWidth / window.innerHeight;
//   更新摄像机的投影矩阵
camera.updateProjectionMatrix();
camera.position.set(0, 0, 5);
scene.add(camera);

// 加入辅助轴,帮助我们查看3维坐标轴
const axesHelper = new THREE.AxesHelper(5);
scene.add(axesHelper);

// 导入纹理
const textureLoader = new THREE.TextureLoader();
const texture = textureLoader.load('textures/particles/10.png');
const texture1 = textureLoader.load('textures/particles/9.png');
const texture2 = textureLoader.load('textures/particles/11.png');

let geometry=null;
let  points=null;

// 设置星系的参数
const params = {
  count: 1000,
  size: 0.1,
  radius: 5,
  branches: 4,
  spin: 0.5,
  color: "#ff6030",
  outColor: "#1b3984",
};

// GalaxyColor
let galaxyColor = new THREE.Color(params.color);
let outGalaxyColor = new THREE.Color(params.outColor);
let material;
const generateGalaxy = () => {
  // 如果已经存在这些顶点,那么先释放内存,在删除顶点数据
  if (points !== null) {
    geometry.dispose();
    material.dispose();
    scene.remove(points);
  }
  // 生成顶点几何
  geometry = new THREE.BufferGeometry();
  //   随机生成位置
  const positions = new Float32Array(params.count * 3);
  const colors = new Float32Array(params.count * 3);

  const scales = new Float32Array(params.count);

  //图案属性
  const imgIndex = new Float32Array(params.count)

  //   循环生成点
  for (let i = 0; i < params.count; i++) {
    const current = i * 3;

    // 计算分支的角度 = (计算当前的点在第几个分支)*(2*Math.PI/多少个分支)
    const branchAngel =
      (i % params.branches) * ((2 * Math.PI) / params.branches);

    const radius = Math.random() * params.radius;
    // 距离圆心越远,旋转的度数就越大
    // const spinAngle = radius * params.spin;

    // 随机设置x/y/z偏移值
    const randomX =
      Math.pow(Math.random() * 2 - 1, 3) * 0.5 * (params.radius - radius) * 0.3;
    const randomY =
      Math.pow(Math.random() * 2 - 1, 3) * 0.5 * (params.radius - radius) * 0.3;
    const randomZ =
      Math.pow(Math.random() * 2 - 1, 3) * 0.5 * (params.radius - radius) * 0.3;

    // 设置当前点x值坐标
    positions[current] = Math.cos(branchAngel) * radius + randomX;
    // 设置当前点y值坐标
    positions[current + 1] = randomY;
    // 设置当前点z值坐标
    positions[current + 2] = Math.sin(branchAngel) * radius + randomZ;

    const mixColor = galaxyColor.clone();
    mixColor.lerp(outGalaxyColor, radius / params.radius);

    //   设置颜色
    colors[current] = mixColor.r;
    colors[current + 1] = mixColor.g;
    colors[current + 2] = mixColor.b;



    // 顶点的大小
    scales[current] = Math.random();

    // 根据索引值设置不同的图案;
    imgIndex[current] = i%3 ;
  }
  geometry.setAttribute("position", new THREE.BufferAttribute(positions, 3));
  geometry.setAttribute("color", new THREE.BufferAttribute(colors, 3));
  geometry.setAttribute("aScale", new THREE.BufferAttribute(scales, 1));
  geometry.setAttribute("imgIndex", new THREE.BufferAttribute(imgIndex, 1));
  //   设置点的着色器材质
  material = new THREE.ShaderMaterial({
    vertexShader: vertexShader,
    fragmentShader: fragmentShader,
    
    transparent: true,
    vertexColors: true,
    blending: THREE.AdditiveBlending,
    depthWrite: false,
    uniforms: {
      uTime: {
        value: 0,
      },
      uTexture:{
        value:texture
      },
      uTexture1:{
        value:texture1
      },
      uTexture2:{
        value:texture2
      },
      uTime:{
        value:0
      },
      uColor:{
        value:galaxyColor
      }

    },
  });

  //   生成点
  points = new THREE.Points(geometry, material);
  scene.add(points);
  console.log(points);
  //   console.log(123);
};

generateGalaxy()



// 初始化渲染器
const renderer = new THREE.WebGLRenderer();
renderer.shadowMap.enabled = true;

// 设置渲染尺寸大小
renderer.setSize(window.innerWidth, window.innerHeight);

// 监听屏幕大小改变的变化,设置渲染的尺寸
window.addEventListener("resize", () => {
  //   console.log("resize");
  // 更新摄像头
  camera.aspect = window.innerWidth / window.innerHeight;
  //   更新摄像机的投影矩阵
  camera.updateProjectionMatrix();

  //   更新渲染器
  renderer.setSize(window.innerWidth, window.innerHeight);
  //   设置渲染器的像素比例
  renderer.setPixelRatio(window.devicePixelRatio);
});



// 将渲染器添加到body
document.body.appendChild(renderer.domElement);

// 初始化控制器
const controls = new OrbitControls(camera, renderer.domElement);
// 设置控制器阻尼
controls.enableDamping = true;
// // 设置自动旋转
// controls.autoRotate = true;

const clock = new THREE.Clock();

function animate(t) {
  //   controls.update();
  const elapsedTime = clock.getElapsedTime();
  material.uniforms.uTime.value = elapsedTime;
  requestAnimationFrame(animate);
  // 使用渲染器渲染相机看这个场景的内容渲染出来
  renderer.render(scene, camera);
}

animate();

src/shader/basic/fragmentShader.glsl



varying vec2 vUv;

uniform sampler2D uTexture;
uniform sampler2D uTexture1;
uniform sampler2D uTexture2;
varying float vImgIndex;
varying vec3 vColor;
void main(){
    
    // gl_FragColor = vec4(gl_PointCoord,0.0,1.0);

    // 设置渐变圆
    // float strength = distance(gl_PointCoord,vec2(0.5)); // 点到中心距离
    // strength*=2.0;
    // strength = 1.0-strength;
    // gl_FragColor = vec4(strength);

    // 圆形点
    // float strength = 1.0-distance(gl_PointCoord,vec2(0.5));
    // strength = step(0.5,strength);
    // gl_FragColor = vec4(strength);

    // 根据纹理设置图案
    // vec4 textureColor = texture2D(uTexture,gl_PointCoord);
    // gl_FragColor = vec4(textureColor.rgb,textureColor.r) ;
    vec4 textureColor;
    if(vImgIndex==0.0){
       textureColor = texture2D(uTexture,gl_PointCoord);
    }else if(vImgIndex==1.0){
       textureColor = texture2D(uTexture1,gl_PointCoord);
    }else{
       textureColor = texture2D(uTexture2,gl_PointCoord);
    }
    

    gl_FragColor = vec4(vColor,textureColor.r) ;
    

}

src/shader/basic/vertexShader.glsl


varying vec2 vUv;

attribute float imgIndex;
attribute float aScale;
varying float vImgIndex;

uniform float uTime;

varying vec3 vColor;
void main(){
    vec4 modelPosition = modelMatrix * vec4( position, 1.0 );
    

    // 获取定点的角度
    float angle = atan(modelPosition.x,modelPosition.z);
    // 获取顶点到中心的距离
    float distanceToCenter = length(modelPosition.xz);
    // 根据顶点到中心的距离,设置旋转偏移度数
    float angleOffset = 1.0/distanceToCenter*uTime;
    // 目前旋转的度数
    angle+=angleOffset;

    modelPosition.x = cos(angle)*distanceToCenter;
    modelPosition.z = sin(angle)*distanceToCenter;

    vec4 viewPosition = viewMatrix*modelPosition;
    gl_Position =  projectionMatrix * viewPosition;

    // 设置点的大小
    // gl_PointSize = 100.0; // 点的大小
    // 根据viewPosition的z坐标决定是否原理摄像机
    gl_PointSize =200.0/-viewPosition.z*aScale; // 点的大小
    vUv = uv;
    vImgIndex=imgIndex;
    vColor = color;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/146743.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于单片机的电源切换控制器设计(论文+源码)

1.系统设计 在基于单片机的电源切换控制器设计中&#xff0c;系统功能设计如下&#xff1a; &#xff08;1&#xff09;实现电源的电压检测&#xff1b; &#xff08;2&#xff09;如果电压太高&#xff0c;通过蜂鸣器进行报警提示&#xff0c;继电器进行切换&#xff0c;使…

Idea 编译SpringBoot项目Kotlin报错/Idea重新编译

原因应该是一次性修改了大量的文件, SpringBoot项目启动Kotlin报错, Build Project也是同样的结果, 报错如下 Error:Kotlin: Module was compiled with an incompatible version of Kotlin. The binary version of its metadata is 1.9.0, expected version is 1.1.13. Build-&…

python语言的由来与发展历程

Python语言的由来可以追溯到1989年&#xff0c;由Guido van Rossum&#xff08;吉多范罗苏姆&#xff09;创造。在他的业余时间里&#xff0c;Guido van Rossum为了打发时间&#xff0c;决定创造一种新的编程语言。他受到了ABC语言的启发&#xff0c;ABC语言是一种过程式编程语…

Hadoop-HDFS架构与设计

HDFS架构与设计 一、背景和起源二、HDFS概述1.设计原则1.1 硬件错误1.2 流水访问1.3 海量数据1.4 简单一致性模型1.5 移动计算而不是移动数据1.6 平台兼容性 2.HDFS适用场景3.HDFS不适用场景 三、HDFS架构图1.架构图2.Namenode3.Datanode 四、HDFS数据存储1.数据块存储2.副本机…

亚马逊云AI大语言模型应用下的创新Amazon Transcribe的使用

Transcribe简介 语音识别技术&#xff0c;也被称为自动语音识别&#xff08;Automatic Speech Recognition&#xff0c;简称ASR&#xff09;&#xff0c;其目标是将人类的语音中的词汇内容转换为计算机可读的输入&#xff0c;例如按键、二进制编码或者字符序列。语音识别技术已…

2023-11-14 LeetCode每日一题(阈值距离内邻居最少的城市)

2023-11-14每日一题 一、题目编号 1334. 阈值距离内邻居最少的城市二、题目链接 点击跳转到题目位置 三、题目描述 有 n 个城市&#xff0c;按从 0 到 n-1 编号。给你一个边数组 edges&#xff0c;其中 edges[i] [fromi, toi, weighti] 代表 fromi 和 toi 两个城市之间的…

阿里达摩院开源DAMO-YOLO

1.简介 DAMO-YOLO是一个兼顾速度与精度的目标检测框架&#xff0c;其效果超越了目前的一众YOLO系列方法&#xff0c;在实现SOTA的同时&#xff0c;保持了很高的推理速度。DAMO-YOLO是在YOLO框架基础上引入了一系列新技术&#xff0c;对整个检测框架进行了大幅的修改。具体包括…

c语言从入门到实战——基于指针的数组与指针数组

基于指针的数组与指针数组 前言1. 数组名的理解2. 使用指针访问数组3. 一维数组传参的本质4. 冒泡排序5. 二级指针6. 指针数组7. 指针数组模拟二维数组 前言 指针的数组是指数组中的元素都是指针类型&#xff0c;它们指向某种数据类型的变量。 1. 数组名的理解 我们在使用指针…

Excel-快速将公式运用到一整列

先在该列的第一个单元格里写好公式&#xff0c;然后单击该单元格 在图中标示的地方输入我们需要填充的单元格区域 同时按住Ctrl和Enter键&#xff0c;这时需要填充的单元格区域就都被选中了 然后单击一下图中公式的后面&#xff0c;再次按下Ctrl和Enter键&#xff0c;这样就完…

第3章:搜索与图论【AcWing】

文章目录 图的概念图的概念图的分类有向图和无向图 连通性连通块重边和自环稠密图和稀疏图参考资料 图的存储方式邻接表代码 邻接矩阵 DFS全排列问题题目描述思路回溯标记剪枝代码时间复杂度 [N 皇后问题](https://www.luogu.com.cn/problem/P1219)题目描述全排列思路 O ( n ! …

Unity--互动组件(Toggle)

1.组件的可交互 2.组件的过渡状态 3.组件的导航 4.Toggle的属性和参数设置 Toggle 切换控制是一个复选框&#xff0c;允许用户打开或关闭的一个选项&#xff1b; ”Toggle的属性和参数&#xff1a;“” Is on&#xff1a;&#xff08;开启&#xff09; 拨动开关是否从一开…

二叉树基础

前言 我们好久没有更新数据结构的博文了&#xff0c;今天来更新一期树&#xff01;前几期我们已经介绍了顺序表、链表&#xff0c;栈和队列等基本的线性数据结构并对其分别做了实现&#xff0c;本期我们再来介绍一个灰常重要的非线性基本结构 ---- 树型结构。 本期内容介绍 树…

计算机 - - - 浏览器网页打开本地exe程序,网页打开微信,网页打开迅雷

效果 在电脑中安装了微信和迅雷&#xff0c;可以通过在地址栏中输入weixin:打开微信&#xff0c;输入magnet:打开迅雷。 同理&#xff1a;在网页中使用a标签&#xff0c;点击后跳转链接打开weixin:&#xff0c;也会同样打开微信。 运用同样的原理&#xff0c;在网页中点击超…

第3关:集合操作100

任务描述相关知识编程要求测试说明 任务描述 本关任务&#xff1a;使用 集合操作解决实际问题 相关知识 1.集合并操作符 可转换为SQL 若R,S的属性名不同&#xff0c;可使用重命名使相应列名一致后进行并操作 例如&#xff1a;R(A,B,C) S(D,E,F) select A,B from R union sel…

【STM32】串口和printf

1.数据通信的基本知识 1.串行/并行通信 2.单工/半双工/全双工通信 类似于【广播 对讲 电话】 不是有两根线就是全双工&#xff0c;而是输入和输出都有对应的数据线。 3.同步/异步通信 区分同步/异步通信的根本&#xff1a;判断是否有时钟信号&#xff08;时钟线&#xff09;。…

开源维修上门服务小程序SAAS系统源码 带完整搭建教程

在现代生活中&#xff0c;家电设备维修往往是一个耗时且繁琐的过程。消费者需要花费大量时间寻找合适的维修人员&#xff0c;并面临服务质量不稳定的风险。同时&#xff0c;对于维修人员来说&#xff0c;寻找客户和接收订单的过程也十分繁琐。因此&#xff0c;开发一款基于小程…

深入理解JVM虚拟机第二十五篇:详解JVM方法的绑定机制静态绑定和动态绑定,早期绑定晚期绑定,并编写代码从字节码角度证明这件事情

大神链接&#xff1a;作者有幸结识技术大神孙哥为好友&#xff0c;获益匪浅。现在把孙哥视频分享给大家。 孙哥链接&#xff1a;孙哥个人主页 作者简介&#xff1a;一个颜值99分&#xff0c;只比孙哥差一点的程序员 本专栏简介&#xff1a;话不多说&#xff0c;让我们一起干翻J…

【MediaFoundation】相关的概念

MF 概览 Media Foundation 提供了两种不同的编程模型&#xff0c;左边展示的是端到端的媒体数据模型&#xff0c;主要用在&#xff1a;播放URL或者文件&#xff0c;以及控制流。 在图表右侧展示的第二种模型中&#xff0c;应用程序可以从源头拉取数据&#xff0c;也可以将数据…

一文了解VR全景拍摄设备如何选择,全景图片如何处理

引言&#xff1a; 在如今的数字化时代&#xff0c;虚拟现实&#xff08;VR&#xff09;技术不仅为我们的生活增添了许多乐趣&#xff0c;也为摄影领域带来了新的摄影方式&#xff0c;那么VR全景拍摄如何选择设备&#xff0c;全景图片又怎样处理呢&#xff1f; 一. VR全景拍摄设…

uniapp项目笔记

1.生成二维码 import uqrCode from /static/erweima.js uqrCode.make({canvasId: qrcode,componentInstance: this,text: JSON.stringify(item.id),size: 150,margin: 0,backgroundColor: #ffffff,foregroundColor: #000000,fileType: jpg,errorCorrectLevel: uqrCode.errorCor…