基于引力搜索算法优化概率神经网络PNN的分类预测 - 附代码

基于引力搜索算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于引力搜索算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于引力搜索优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用引力搜索算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于引力搜索优化的PNN网络

引力搜索算法原理请参考:https://blog.csdn.net/u011835903/article/details/108518992

利用引力搜索算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

引力搜索参数设置如下:

%% 引力搜索参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,引力搜索-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/145178.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

spring cloud 简介

springcloud 定义 1.定义:springcloud为开发人员提供了在分布式系统中快速构建一些通用模式的工具(例如配置管理、服务发现、断路器、路由、控制总线等)2.微服务:基于单体应用,基于业务进行拆分,每个服务都是独立应用…

多篇论文介绍-DSConv-原文

论文地址 https://arxiv.org/pdf/1901.01928v1.pdf 目录 01 改进 YOLOv5的交通灯实时检测鲁棒算法 01 作用 02 模型介绍 02 基于改进YOLOv7一tiny 算法的输电线路螺栓缺销检测 01 作用 02 模型介绍 03 结合注意力机制的 YOL&#xff2…

算法笔记-第九章-二叉树的遍历(待整理)

算法笔记-第九章-二叉树的遍历 二叉树的先序遍历二叉树的中序遍历二叉树的先序遍历 //二叉树的先序遍历 #include <cstdio> #include <vector> using namespace std;const int MAXN = 50;struct Node //用结构体表示左子树和右子树的数据 {int l, r; } nodes[MAXN]…

大模型的实践应用6-百度文心一言的基础模型ERNIE的详细介绍,与BERT模型的比较说明

大家好,我是微学AI,今天给大家讲一下大模型的实践应用6-百度文心一言的基础模型ERNIE的详细介绍,与BERT模型的比较说明。在大规模语料库上预先训练的BERT等神经语言表示模型可以很好地从纯文本中捕获丰富的语义模式,并通过微调的方式一致地提高各种NLP任务的性能。然而,现…

树莓派Ubuntu20.04设置静态IP后无法联网的问题及解决

一、问题描述 在使用虚拟机进行ssh远程连接时&#xff0c;需要知道目标机Ubuntu系统的用户名和IP地址&#xff0c;若IP地址是动态的&#xff0c;则每次远程连接前都需要接上显示器查看IP信息&#xff0c;很繁琐&#xff0c;所以需要设置静态的IP。 二、设置步骤 首先&#x…

Kerberos认证系统

文章目录 前提知识原理第一次对话第二次对话第三次对话 总结发现 前提知识 KDC&#xff1a;由AS、TGS&#xff0c;还有一个Kerberos Database组成。 Kerberos Database用来存储用户的密码或者其他所有信息&#xff0c;请求的时候需要到数据库中查找。 AS&#xff1a;为客户端提…

一文搞定接口自动化测试框架搭建orPytest_知识点总结

pytest编写的规则&#xff1a; 1、测试文件以test_开头&#xff08;以_test结尾也可以&#xff09; 2、测试类以Test开头&#xff0c;并且不能带有__init__方法 3、测试函数以test_开头 4、断言必须使用assert pytest.main([-s,-v]) &#xff1a;用来执行测试用例 -s 打印prin…

【JUC】五、线程的第三种创建方式 Callable

文章目录 1、Callable概述2、FutureTask Java基础中&#xff0c;了解到的创建线程的两种方式为&#xff1a; 继承Thread类实现Runnable接口 除了以上两种&#xff0c;还可以通过&#xff1a; Callable接口&#xff08;since JDK1.5&#xff09;线程池方式 1、Callable概述 …

JavaScript_表单校验用户名和密码

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>注册页面</title><style>*{margin: 0px;padding: 0px;box-sizing: border-box;}body{background: url("img/register_bg.png") …

1m照片尺寸怎么调?三个方法解决!

为了满足不同的需求&#xff0c;比如上传到网站、存储在移动设备上或传输给他人等&#xff0c;将照片尺寸调整到1M可以有效地减少照片占用的存储空间&#xff0c;同时保持相对较高的图像质量。下面三种好用的方法。 方法一&#xff1a;使用嗨格式压缩大师 1、打开软件&#xf…

thinkphp5 原生sql查询及取返回值

刚接触php&#xff0c;以前大量数据库都是直接写sql的&#xff0c;方便&#xff0c;好管理&#xff0c; 用thinkphp后&#xff0c;发现没有sql&#xff0c;对mvc模式还没深入了解&#xff0c;但这边要在上面写一些接口&#xff0c;有涉及数据库查询&#xff0c;修改等&#xf…

map\set封装

目录 1. set和map的底层结构1.1 红黑树1.2 set1.3 map 2. 模拟实现2.1 红黑树2.1 map和set以及仿函数2.3 迭代器2.3.1 const迭代器 2.3 set和map封装 1. set和map的底层结构 1.1 红黑树 这两个容器底层都是对红黑树的封装&#xff0c;因此需要先看一下红黑树结构部分的底层源…

基于免费敏捷工具Leangoo领歌的Scrum敏捷管理实践

Leangoo领歌是一款永久免费的专业的敏捷开发管理工具&#xff0c;提供端到端敏捷研发管理解决方案&#xff0c;涵盖敏捷需求管理、任务协同、进展跟踪、统计度量等。 Leangoo领歌上手快、实施成本低&#xff0c;可帮助企业快速落地敏捷&#xff0c;提质增效、缩短周期、加速创新…

医学生画图ppt

微信回复&#xff1a;素材 领取

中睿天下Coremail | 2023年Q3企业邮箱安全态势观察报告

10月25日&#xff0c;北京中睿天下信息技术有限公司联合Coremail邮件安全发布《2023年第三季度企业邮箱安全性研究报告》。2023年第三季度企业邮箱安全呈现出何种态势&#xff1f;作为邮箱管理员&#xff0c;我们又该如何做好防护&#xff1f; 以下为精华版阅读&#xff0c;如需…

Java日志规范总结

打印异常错误 正确应该是&#xff1a; 或者带上入参异常 没有意义的日志 最好带上参数&#xff0c;否则不知道这条日志代表什么意义。 日志不全 这种返回值日志尽量带上全部信息&#xff0c;排查的时候&#xff0c;只用错误信息是排查不出来问题的&#xff0c;顺丰那边…

【10套模拟】【3】

关键字&#xff1a; 物理存储、完全二叉树、出栈入栈时间复杂度、线索二叉树

数据同步工具调研选型:SeaTunnel 与 DataX 、Sqoop、Flume、Flink CDC 对比

产品概述 Apache SeaTunnel 是一个非常易用的超高性能分布式数据集成产品&#xff0c;支持海量数据的离线及实时同步。每天可稳定高效同步万亿级数据&#xff0c;已应用于数百家企业生产&#xff0c;也是首个由国人主导贡献到 Apache 基金会的数据集成顶级项目。 SeaTunnel 主…

跨境国际快递物流API:加速全球贸易的关键

引言 全球贸易的蓬勃发展在今日商业中扮演着至关重要的角色。而随着全球市场的扩大和商业界的日益复杂化&#xff0c;跨境国际快递物流API正成为推动全球贸易加速发展的关键因素。 为何说跨境国际快递物流API是加速全球贸易的关键&#xff1f; 连接全球商业网络 跨境国际快…