什么是正交编码?
ab正交编码器(又名双通道增量式编码器),用于将线性移位转换为脉冲信号。通过监控脉冲的数目和两个信号的相对相位,用户可以跟踪旋转位置、旋转方向和速度。另外,第三个通道称为索引信号,可用于对位置计数器进行复位,从而确定绝对位置。其工作原理:正交编码器通过内部两个光敏接收管将编码器的转向转化为A相和B相脉冲的时序和相位关系。编码器每转还输出一个Z相脉冲以代表零位参考位。正交编码器的脉冲信号一般连接计数器、PLC、计算机。形式有单相连接(用于单方向测速、计数)AB两相连接(用于双向测速、计数及判断方向)ABZ三相连接(用于带参考位修正的位置测量)差分连接(用于远距离传输)。
AB相增量式编码器,在输出方式上分为电压输出和集电极开路输出两种输出方式。其中集电极开路输出在采集脉冲是需要加一个上拉电阻。同时编码器还有一个Z相信号。
编码器输出信号有ABZ三相,其中AB相是脉冲输出信号,Z相是圈数(编码器转一整圈输出一个脉冲),AB两相相差90°,根据A超前于B还是滞后于B来判断旋转方向。 旋转编码器由一个中心有轴的光电码盘。
光电编码器
AB相输出:增量式正交编码盘示意图。索引相也就是Z相
三相信号正向、反向旋转时序关系。
发光二极管发射的光通过光栅到达光敏管,引起电平变化。
如果正转,A相输出超前B相90度,如果反转A相滞后B相90度。
每转一周,索引相,即Z相经过发光二极管一次,输出一个脉冲,可作为编码器的机械零位。
当 A 信号“超前” B 信号时, 计数器加计数; A 信号“滞后” B 信号时, 计数器减计数。而且,用户可选用 4、 2、 1 倍计数模式对 A, B 信号进行计数设置,分别介绍如下:
4 倍计数:若为正向计数, 编码器计数器的值为 A 反馈脉冲数的 4 倍;若为负向计数, 编码器计数器的值为 B 反馈脉冲数的 4 倍。
2 倍计数:若为正向计数, 编码器计数器的值为 A 反馈脉冲数的 2 倍;若为负向计数, 编码器计数器的值为 B 反馈脉冲数的 2 倍。
1 倍计数:若为正向计数, 编码器计数器的值为 A 反馈脉冲数;若为负向计数, 编码器计数器值为 B 反馈脉冲数。
例如:如果使用的编码器为 2500 线,即电机转一周反馈的 A、 B 脉冲数都为 2500个,让电机转一周, 若编码器反馈输入模式为 4 倍计数, 编码器计数器的值为 10000;若设置为 2 倍计数, 编码器计数器的值为 5000;若设置为 1 倍计数, 编码器计数器的值为 2500。 这样可以提高编码器的分辨率。
正交编码的方向通过 A减B的方式进行实现
测量位置信息可以通过 A B的脉冲数量,也可以通过测量A或者B的频率进行实现,由此产生的差异仅仅是ASW算法的一点不同而已。
高速的时候通过测量脉冲数比较精准
低速的时候通过测量周期比较精准,实现的时候可以通过两种结合的方式,更便于精准控制。