【JavaEE初阶】IP协议简介

文章目录

  • 前言
  • 🌴IP协议的概念
  • 🌳IP数据报
    • 🚩IPv4协议头格式
    • 🚩IPv6的诞生
  • 🎍IP地址
    • 🚩IP地址的格式:
    • 🚩IP地址的分类
      • 🎈网络号与主机号的划分
    • 🚩特殊的IP地址
    • 🚩子网掩码
      • 🎈计算方式
  • ⭕总结

前言

IP协议是网络层重点协议,其重要作用是:在复杂的网络环境中确定一个合适的路径。

下面只对该协议简单介绍

🌴IP协议的概念

IP指网际互连协议,Internet Protocol的缩写,是TCP/IP体系中的网络层协议。设计IP的目的是提高网络的可扩展性:一是解决互联网问题,实现大规模、异构网络的互联互通;二是分割顶层网络应用和底层网络技术之间的耦合关系,以利于两者的独立发展。根据端到端的设计原则,IP只为主机提供一种无连接、不可靠的、尽力而为的数据包传输服务。

🌳IP数据报

🚩IPv4协议头格式

在这里插入图片描述

  • 4位版本号(version)

指定IP协议的版本,对于IPv4来说,就是4。

  • 4位头部长度(header length)

IP头部的长度是多少个32bit,也就是 length * 4 的字节数。4bit表示最大的数字是15,因此IP头部最大长度是60字节

  • 8位服务类型(Type Of Service)

3位优先权字段(已经弃用),4位TOS字段,和1位保留 字段(必须置为0)
4位TOS分别表示:最小延时,最大吞吐量,最高可靠性,最小成本。
这四者相互冲突,只能选择一个。对于ssh/telnet这样的应用程序,最小延时比较重要;对 于ftp这样的程序,最大吞吐量比较重要

  • 16位总长度(total length)

IP数据报整体占多少个字节

由于16位总长度表示的数据大小有限,而实际通信中,我们所传的数据大都已经超过了这个限制。为了解决这一限制带来的问题,就规定路由器必须有IP信息包分割与重组的机制,将过长的信息包进行分割,以便能在最大传输单位较小的网络上传输。分割后的IP信息包,由目的设备接收后重组,恢复成原来IP信息包。

为了IP数据报的分割和重组,IP协议中给了以下字段进行使用

  • 16位标识(id):

唯一的标识主机发送的报文。如果IP报文在数据链路层被分片了,那么每一个片里面的这个id都是相同的。

  • 3位标志字段:

第一位保留(保留的意思是现在不用,但是还没想好说不定以后要用到)。第二位置为1表示禁止分片,这时候如果报文长度超过MTU,IP模块就会丢弃报文。第三位表示"更多分片",如果分片了的话,最后一个分片置为1,其他是0。类似于一个结束标记。

  • 13位分片偏移(framegament offset)

是分片相对于原始IP报文开始处的偏移。其实就是在表示当前分片在原报文中处在哪个位置。实际偏移的字节数是这个值 * 8得到的。因此,除了最后一个报文之外,其他报文的长度必须是8的整数倍(否则报文就不连续了)。

  • 8位生存时间(Time To Live,TTL)

数据报到达目的地的最大报文跳数。一般是64。每次 经过一个路由,TTL -= 1,一直减到0还没到达,那么就丢弃了。这个字段主要是用来防止出
现路由循环。

  • 8位协议:

表示上层协议的类型。

  • 16位头部校验和

使用CRC进行校验,来鉴别头部是否损坏。

  • 32位源地址和32位目标地址

表示发送端和接收端

关于选项这里先不做描述

🚩IPv6的诞生

自从1970年代IPv4问世以来,数据通信技术日新月异有了很大发展。虽然IPv4设计得很好,但其缺点也逐渐显露出来:

  • 虽说借助子网化、无类寻址和NAT技术可以提高IP地址使用效率,因特网中IP地址的耗尽仍然是一个没有彻底解决的问题;

  • IPv4没有提供对实时音频和视频传输这种要求传输最小时延的策略和预留资源支持;

  • IPv4不能对某些有数据加密和鉴别要求的应用提供支持。

为了克服这些缺点,IPv6(Internet working Protocol version6)被提了出来。

  • 在IPv6中,IP地址格式和分组长度以及分组的格式都改变了。IPv6每个分组由必须的基本头部和其后的有效载荷组成。

  • 有效载荷由可选的扩展头部和来自上层的数据组成。

  • 基本头部占用40字节,有效载荷可以包含65535字节数据

🎍IP地址

IP地址是IP协议提供的一种统一的地址格式,它为互联网上的每一个网络和每一台主机分配一个逻辑地址,以此来屏蔽物理地址的差异

🚩IP地址的格式:

IP地址是一个32位的二进制数,通常被分割为4个“8位二进制数”(也就是4个字节),如:01100100.00000100.00000101.00000110。

通常用“点分十进制”的方式来表示,即 a.b.c.d 的形式(a,b,c,d都是0~255之间的十进制整数)。如:100.4.5.6

🚩IP地址的分类

IP地址是用来识别网络上的设备,因此,IP地址是由网络地址与主机地址两部分所组成。

  • 网络地址

网络地址可用来识别设备所在的网络,网络地址位于IP地址的前段。当组织或企业申请IP地址时,所获得的并非IP地址,而是取得一个唯一的、能够识别的网络地址。同一网络上的所有设备,都有相同的网络地址。IP路由的功能是根据IP地址中的网络地址,决定要将IP信息包送至所指明的那个网络。

  • 主机地址

主机地址位于IP地址的后段,可用来识别网络上设备。同一网络上的设备都会有相同的网络地址,而各设备之间则是以主机地址来区别。

由于各个网络的规模大小不一,大型的网络应该使用较短的网络地址,以便能使用较多的主机地址;反之,较小的网络则应该使用较长的网络地址。为了符合不同网络规模的需求,IP在设计时便根据网络地址的长度,设计与划分IP地址

🎈网络号与主机号的划分

过去曾经提出一种划分网络号和主机号的方案,把所有IP 地址分为五类,如下图所示
在这里插入图片描述

传统IP地址的运行方式,由于以等级来划分,因此称为等级式的划分方式。相对的,后来又产生了无等级的划分方式,也就是CIDR(Classless Inter-Domain Routing)

🚩特殊的IP地址

  • 将IP地址中的主机地址全部设为0,就成为了网络号,代表这个局域网;

  • 将IP地址中的主机地址全部设为1,就成为了广播地址,用于给同一个链路中相互连接的所有主机发送数据包;

  • 127.*的IP地址用于本机环回(loop back)测试,通常是127.0.0.1
    本机环回主要用于本机到本机的网络通信(系统内部为了性能,不会走网络的方式传输),对于开发网络通信的程序(即网络编程)而言,常见的开发方式都是本机到本机的网络通信。

🚩子网掩码

在上述的分类中,存在IP地址浪费的问题:

(1)单位一般会申请B类网络(C类连接主机数量有限),但实际网络架设时,连接的主机数量又常远小于65534(B类连接主机数),造成IP地址浪费;同理,A类网络的IP地址也会造成大量的浪费。

(2)当一个单位申请了一个网络号。他想将该网络能表示的IP地址再分给它下属的几个小单位时,如果在申请新的网络就会造成浪费。

为了解决以上问题,引入子网掩码来进行子网划分:

  • 子网掩码的格式:

子网掩码格式和IP地址一样,也是一个32位的二进制数。其中左边是网络位,用二进制数字“1”表示,1的数目等于网络位的长度;右边是主机位,用二进制数字“0”表示,0的数目等于主机位的长度。子网掩码也可以使用二进制所有高位1相加的数值来表示,如以上子网掩码也可以表示为24。

  • 子网掩码的作用

(1)划分A,B,C三类 IP 地址子网:如一个B类IP地址:191.100.0.0,按A ~ E类分类来说,网络号二进制数为16位网络号+16位主机号。假设使用子网掩码 255.255.128.0(即17) 来划分子网,意味着划分子网后,高17位都是网络位/网络号,也就是将原来16位主机号,划分为1位子网号+15位主机号

此时,IP地址组成为:网络号+子网号+主机号,网络号和子网号统一为网络标识(划分子网后的网络号/网段)

(2)网络通信时,子网掩码结合IP地址,可以计算获得网络号(划分子网后的网络号)及主机号(划分子网后的主机号)。一般用于判断目的IP与本IP是否为同一个网段

🎈计算方式

将 IP 地址和子网掩码进行“按位与”操作(二进制相同位,与操作,两个都是1结果为1,否则为0),得到的结果就是网络号。

将子网掩码二进制按位取反,再与 IP 地址位与计算,得到的就是主机号。

十进制二进制
IP地址180.210.242.13110110100.11010010.11110010.10000011
子网掩码255.255.248.011111111.11111111.11111000.00000000
网络号180.210.240.010110100.11010010.11110000.00000000
主机号0.0.2.13100000000.00000000.00000010.10000011

⭕总结

关于《【JavaEE初阶】IP协议简介》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/144340.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

stable diffusion comfyui的api使用教程

一、为什么要使用comfyui的api?对比webui的api,它有什么好处? 1、自带队列 2、支持websocket 3、无需关心插件是否有开放api接口,只要插件在浏览器中可以正常使用,接口就一定可以使用 4、开发人员只需关心绘图流程的搭建 5、切换…

SAP 70策略测试简介

在前面的文章中我们已经测试了10、11、20、40、50、52、60、62策略的测试,接下来我们需要对70策略进行测试,很多的项目中也都会用到70策略。 70策略是一种比较常见的、基于按库存且主要用于半成品或者原材料的计划策略。 我们还是按照之前的惯例,先看下70策略的后台配置 我…

C语言仅凭自学能到什么高度?

今日话题,C语言仅凭自学能到什么高度?学习C语言的决定我确实非常推荐,毕竟它是编程领域的“通用工具”,初学者可以尝试并在发现编程的乐趣后制定长期学习计划。至于能够达到何种高度,这实在无法准确回答。即使是经验丰…

CentOS修改root用户密码

一、适用场景 1、太久没有登录CentOS系统,忘记管理密码。 2、曾经备份的虚拟化OVA或OVF模板,使用模板部署新系统后,忘记root密码。 3、被恶意攻击修改root密码后的紧急修复。 二、实验环境 1、VMware虚拟化的ESXI6.7下,通过曾经…

Android Studio的代码笔记--JSON解析学习2

JSON学习2 生成JSON解析JSON java解析json字符串和合成json字符串 json字符串 {"type":"getConfig","ip":"192.168.1.100"}使用 String ss groupJS("Config","192.168.1.100"); splitJS(ss);回显 I/lxh: group…

工业交换机的解决方案

在工业网络产品的早期阶段,主要关注的是工业交换机的电气、物理、结构等方面的特点。如今的工业网络,在规范硬件条件的同时,也正在向智能、灵活、高效的方向发展。除了注重硬件方面,它还越来越重视软件特性,如网管、环…

深度对话:以实在RPA Agent智能体安全机制破解LLM应用谜题

AI大模型席卷全球,为各个行业带来了颠覆式创新机遇,同时也打开了未知的潘多拉魔盒。随着大语言模型能力的不断增强和适用范围延伸,大模型本身带来的隐私泄漏、数据安全等问题越发成为各大厂商关注的核心,引发了各界更多的思考与发…

【java学习—十四】反射机制概述(1)

文章目录 1. 理解反射机制2. Java Reflection 1. 理解反射机制 (1)人的反射原理 (2)java反射原理 2. Java Reflection Reflection(反射)是被视为动态语言的关键,反射机制允许程序在执行期借助…

DAY53 1143.最长公共子序列 + 1035.不相交的线 + 53. 最大子序和

1143.最长公共子序列 题目要求:给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。 一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删…

CAP理论

CAP理论 CAP理论指出,在网络分区的情况下(即P条件),系统必须在保持一致性和可用性之间做出选择,无法同时满足。这意味着在出现网络分区时,分布式系统不得不权衡是保持一致性还是可用性。 概念 CAP理论指…

Python爬虫过程中DNS解析错误解决策略

在Python爬虫开发中,经常会遇到DNS解析错误,这是一个常见且也令人头疼的问题。DNS解析错误可能会导致爬虫失败,但幸运的是,我们可以采取一些策略来处理这些错误,确保爬虫能够正常运行。本文将介绍什么是DNS解析错误&am…

Open X-Embodiment 超大规模开源真实机器人数据集分享

近期,Google旗下的前沿人工智能企业DeepMind汇集了来自 22 种不同机器人类型的数据,创建了 Open X-Embodiment 数据集并开源了出来。该数据集让他们研发的RT-2 机器人在制造和编程方式上有了重大飞跃。 有分析称,在上述数据集上训练的 RT-2-…

嵌入式LINUX——环境搭建 windows、虚拟机、开发板 互ping

摘要: 本文包含,如果设置linux开发板和虚拟机、windows 互ping成功 以及设置过程中出现的虚拟机、开发板查询不到eth0 windows ping开发板出项丢包等问题的解决方式。 windows端设置 windows端插入USB转网卡 打开windows桌面下右下角的网络标识 打开“更改适配器选项”…

图片转excel的三种方案(电脑、手机)

图片怎么转换成excel文件呢?用金鸣表格文字识别是最便捷、最佳的解决方案。也许有些同学会问,那我用手工也可以解决呀,干吗要用软件?这么想就不对了,手工做不但要做表格线,还要手工打字,非常麻烦,而且容易出错,特别是对于数字多的图片,更是要命,现在有金鸣识别就不用那么麻烦…

LeetCode(14)加油站【数组/字符串】【中等】

目录 1.题目2.答案3.提交结果截图 链接: 134. 加油站 1.题目 在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。 你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加…

主从复制和读写分离

MySQL 主从复制和读写分离: 主从复制:主MySQL上的数据,新增,修改库,表,表里的数据,都会同步到从MySQL上。 MySQL的主从复制的模式:(面试题) 1,异…

金镂智能——蔡银云 移动建筑的未来

蔡银云,一个有着军旅经历的创业者。在他的创业道路上,曾经历种种困难与挑战,却始终坚守着初心,并愈发深刻地理解到自己应当为社会奉献力量。从最初的追求利润,到后来的承担社会责任,蔡银云的故事中满篇充溢…

后端接口性能优化分析-1

👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring源码、JUC源码🔥如果感觉博主的文章还不错的话,请👍三连支持&…

3DMAX建模基础教程:常用工具补充

在本篇3DMAX建模基础教程中,我们将为您介绍一些常用的工具及其功能。熟练掌握这些工具将大大提高您的建模效率。 1️⃣ 选择与变换工具 选择工具:帮助您选择对象,可以通过单击对象或按组选择。 变换工具:对选定的对象进行移动、…

XMind 2023 mac/win:引领思维导图革命,让思维更直观、更高效!

XMind是一款引领思维导图的革命性软件,以其强大的功能和高效的操作体验,赢得了全球用户的广泛喜爱。作为一款思维导图软件,XMind将复杂的思维过程和想法以直观、清晰的方式呈现出来,让用户能够更好地理解、组织和表达自己的思想。…