MySQL锁机制详解

概述

锁是计算机协调多个进程或线程并发访问某一资源的机制。

在数据库中,除了传统的计算资源(如CPU、RAM、I/O等)的争用以外,数据也是一种供需要用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。

锁分类

锁粒度: 表锁、页锁、行锁。

锁性质: 共享(读)锁、排他(写)锁、意向共享(读)锁、意向排他(写)锁。

锁思想: 悲观锁、乐观锁。

读锁(共享锁,S锁(Shared))

读取操作(SELECT)时创建的锁。其他用户可以并发读取数据,但在读锁未释放前,也就是查询事务结束前,任何事务都不能对数据进行修改(获取数据上的写锁),直到已释放所有读锁。

如果事务A对数据B(1024房)加上读锁后,则其他事务只能对数据B上加读锁,不能加写锁。获得读锁的事务只能读数据,不能修改数据。

针对同一份数据,多个读操作可以同时进行而不会互相影响,比如:

SELECT * FROM `user` WHERE id = 1 lock in share mode

写锁(排它锁,X锁(eXclusive))

如果事务A对数据B加上写锁后,则其他事务不能再对数据B加任何类型的锁。获得写锁的事务既能读数据,又能修改数据。

当前写操作没有完成前,它会阻断其他写锁和读锁,数据修改操作都会加写锁,查询也可以通过for update加写锁,比如:

SELECT * FROM `user` WHERE id = 1 for update

意向锁(Intention Lock)

意向锁(Intention Lock)又称I锁,针对表锁,主要是为了提高加表锁的效率,是mysql数据库自己加的。当有事务给表的数据行加了共享锁或排他锁,同时会给表设置一个标识,代表已经有行锁了,其他事务要想对表加表锁时,就不必逐行判断有没有行锁可能跟表锁冲突了,直接读这个标识就可以确定自己该不该加表锁。特别是表中的记录很多时,逐行判断加表锁的方式效率很低。而这个标识就是意向锁。

意向共享锁,IS锁,对整个表加共享锁之前,需要先获取到意向共享锁。

意向排他锁,IX锁,对整个表加排他锁之前,需要先获取到意向排他锁。

表锁

表级别的锁定是MySQL各存储引擎中最大颗粒度的锁定机制。该锁定机制最大的特点是实现逻辑非常简单,带来的系统负面影响最小。所以获取锁和释放锁的速度很快。由于表级锁一次会将整个表定,所以可以很好的避免困扰我们的死锁问题。

使用表级锁定的主要是MyISAM,MEMORY,CSV等一些非事务性存储引擎。

每次操作锁住整张表。开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低;一般用在整表数据迁移的场景。

--手动增加表锁
lock table 表名称 read(write),表名称2 read(write);
--查看表上加过的锁
show open tables;
--删除表锁
unlock tables;

页锁

只有BDB存储引擎支持页锁,页锁就是在页的粒度上进行锁定,锁定的数据资源比行锁要多,因为一个页中可以有多个行记录。当我们使用页锁的时候,会出现数据浪费的现象,但这样的浪费最多也就是一个页上的数据行。页锁的开销介于表锁和行锁之间,会出现死锁。锁定粒度介于表锁和行锁之间,并发度一般。

行锁

每次操作锁住一行数据。开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度最高。

InnoDB相对于MYISAM的最大不同有两点:

  1. InnoDB支持事务(TRANSACTION)
  2. InnoDB支持行级锁

InnoDB的行锁实际上是针对索引加的锁(在索引对应的索引项上做标记),不是针对整个行记录加的锁。并且该索引不能失效,否则会从行锁升级为表锁。(RR级别会升级为表锁,RC级别不会升级为表锁)

select * from account where name = 'lilei' for update;   
#where条件里的name字段无索引则其它Session对该表任意一行记录做修改操作都会被阻塞住。

关于RR级别行锁升级为表锁的原因分析:

因为在RR隔离级别下,需要解决不可重复读和幻读问题,所以在遍历扫描聚集索引记录时,为了防止扫描过的索引被其它事务修改(不可重复读问题) 或 间隙被其它事务插入记录(幻读问题),从而导致数据不一致,所以MySQL的解决方案就是把所有扫描过的索引记录和间隙都锁上,这里要注意,并不是直接将整张表加表锁,因为不一定能加上表锁,可能会有其它事务锁住了表里的其它行记录。

间隙锁(Gap Lock)

间隙锁,锁的就是两个值之间的空隙,间隙锁是在可重复读隔离级别下才会生效。

Mysql默认级别是repeatable-read,有幻读问题,间隙锁是可以解决幻读问题的。

account表数据如下:

在这里插入图片描述
那么间隙就有 id 为 (3,10),(10,20),(20,30),(30,正无穷) 这四个区间。

如果执行下面这条sql:

BEGIN;

SELECT * FROM account WHERE id = 18 for UPDATE;

#COMMIT;

则其他Session没法在这个(20,30)这个间隙范围里插入任何数据。
也就是说,只要在间隙范围内锁了一条不存在的记录会锁住整个间隙范围,不锁边界记录,这样就能防止其它Session在这个间隙范围内插入数据,就解决了可重复读隔离级别的幻读问题。

临键锁(Next-key Locks)

Next-Key Locks是行锁与间隙锁的组合。

总结

MyISAM在执行查询语句SELECT前,会自动给涉及的所有表加读锁,在执行update、insert、delete操作会自动给涉及的表加写锁。

InnoDB在执行查询语句SELECT时(非串行隔离级别),不会加锁。但是update、insert、delete操作会加行锁。
另外,读锁会阻塞写,但是不会阻塞读。而写锁则会把读和写都阻塞。

Innodb存储引擎由于实现了行级锁定,虽然在锁定机制的实现方面所带来的性能损耗可能比表级锁定会要更高一下,但是在整体并发处理能力方面要远远优于MYISAM的表级锁定的。当系统并发量高的时候,Innodb的整体性能和MYISAM相比就会有比较明显的优势了。

但是,Innodb的行级锁定同样也有其脆弱的一面,当我们使用不当的时候,可能会让Innodb的整体性能表现不仅不能比MYISAM高,甚至可能会更差。

锁等待分析

通过检查InnoDB_row_lock状态变量来分析系统上的行锁的争夺情况

show status like 'innodb_row_lock%';

对各个状态量的说明如下:
Innodb_row_lock_current_waits: 当前正在等待锁定的数量
Innodb_row_lock_time: 从系统启动到现在锁定总时间长度
Innodb_row_lock_time_avg: 每次等待所花平均时间
Innodb_row_lock_time_max:从系统启动到现在等待最长的一次所花时间
Innodb_row_lock_waits: 系统启动后到现在总共等待的次数

对于这5个状态变量,比较重要的主要是:
Innodb_row_lock_time_avg (等待平均时长)
Innodb_row_lock_waits (等待总次数)
Innodb_row_lock_time(等待总时长)

尤其是当等待次数很高,而且每次等待时长也不小的时候,我们就需要分析系统中为什么会有如此多的等待,然后根据分析结果着手制定优化计划。

查看INFORMATION_SCHEMA系统库锁相关数据表

-- 查看事务
select * from INFORMATION_SCHEMA.INNODB_TRX;
-- 查看锁,8.0之后需要换成这张表performance_schema.data_locks
select * from INFORMATION_SCHEMA.INNODB_LOCKS;  
-- 查看锁等待,8.0之后需要换成这张表performance_schema.data_lock_waits
select * from INFORMATION_SCHEMA.INNODB_LOCK_WAITS;  

-- 释放锁,trx_mysql_thread_id可以从INNODB_TRX表里查看到
kill trx_mysql_thread_id

-- 查看锁等待详细信息
show engine innodb status; 

死锁问题分析

set tx_isolation='repeatable-read';
Session_1执行:select * from account where id=1 for update;
Session_2执行:select * from account where id=2 for update;
Session_1执行:select * from account where id=2 for update;
Session_2执行:select * from account where id=1 for update;
查看近期死锁日志信息:show engine innodb status; 

大多数情况mysql可以自动检测死锁并回滚产生死锁的那个事务,但是有些情况mysql没法自动检测死锁,这种情况我们可以通过日志分析找到对应事务线程id,可以通过kill杀掉。

锁优化实践

尽可能让所有数据检索都通过索引来完成,避免无索引行锁升级为表锁。
合理设计索引,尽量缩小锁的范围。
尽可能减少检索条件范围,避免间隙锁。
尽量控制事务大小,减少锁定资源量和时间长度,涉及事务加锁的sql尽量放在事务最后执行。
尽可能用低的事务隔离级别。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/144273.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

看看高情商的CHAT如何写演讲稿?

问CHAT:以“世界问候日,关心你我他”为主题,小学生国旗下讲话稿400字 CHAT 回复: 尊敬的校领导、亲爱的老师、可爱的同学们: 大家好! 今天,在这蓝天白云、红旗飘扬的校园里,我代表…

vue3配置导航栏和页脚(附代码)

一:前言 本文主要是针对刚上手 Vue3 的初学者所写。涉及内容比较简单,没有太过于复杂的逻辑。因此有想学神入知识的可以看一下别的文章。 本次实验的技术是 Vue3 TypeScript Element Plus 。因为这三个是在 Vue 开发中经常一起出现的。如果没有学过的话…

RT-DETR算法优化改进:Backbone改进 | VanillaNet一种新视觉Backbone,极简且强大!华为诺亚2023

💡💡💡本文独家改进: VanillaNet助力RT-DETR ,替换backbone,简到极致、浅到极致!深度为6的网络即可取得76.36%@ImageNet的精度,深度为13的VanillaNet甚至取得了83.1%的惊人性能。 推荐指数:五星 RT-DETR魔术师专栏介绍: https://blog.csdn.net/m0_63774211/cat…

安卓:打包apk时出现Execution failed for task ‘:app:lintVitalRelease

Execution failed for task :lintVitalRelease 程序可以正常运行,但是打包apk的时候报Execution failed for task ‘:app:lintVitalRelease导致打包失败,原因是执行lintVitalRelease失败了,存在错误。解决办法:在app模块的build.…

【原创分享】DC-DC电源PCB设计要点

DC-DC电源是一种用于将直流(DC)电压转换为不同电压级别的电源。它通过内部的电路和拓扑结构,将输入电压调整为所需的输出电压,并提供稳定的电力供应。 DC-DC电源通常包括输入端子、输出端子、开关元件(如开关管&#…

神通MPP数据库的跨库查询

神通MPP数据库的跨库查询 一. 简介二. 系统表三. 跨库查询语法1. 创建外部数据存储服务器2. 删除外部数据存储服务器3. 授予普通用户访问外部数据存储服务器权限4. 回收普通用户访问外部数据存储服务器权限5. 加密函数6. 访问外部数据存储服务器 ★ 四. 跨库查询:统…

记录:unity脚本的编写6.0

目录 unity UI系统添加ui编写脚本 unity UI系统 在日常的游戏或者别的什么活动中,ui总是必不可少的一项,在java中也有关于GUI的内容,unity也不例外,这次就使用脚本控制在unity添加的各种ui组件,使他们可以完成一些我们…

python读取excel,进行数据处理

一、准备python编译器 二、下载 pyexcel 库 pip install pyexcel-xls三、进行编码读取数据 import pyexcel# 读取Excel文件 成本中心字典 data pyexcel.get_array(file_name成本中心.xls)def hand():#打印数据#print(data)url f"INSERT INTO dst_base.sys_dict(p_…

终端神器:tmux

安装tmux简单使用自己的理解(小白专属) 使用的初衷: 在Linux终端下,由于session(会话)和windows(窗口)是绑定一起的,你打开一个终端的黑窗口就是打开一个会话&#xff0c…

MySQL中修改注释+报错1067错误时的解决方法

修改某字段的注释内容的mysql语句 ALTER TABLE consumption_table MODIFY COLUMN risk_level tinyint(1) NOT NULL DEFAULT 0 COMMENT 0-低 1-中 2-高;修改某字段的注释内容的mysql语句时报错1067的解决方法 首先执行MySQL语句:SET sql_mode ‘ALLOW_INVALID_DAT…

【C++】类和对象(3)--初始化列表(再谈构造函数)

目录 一 引入 二 初始化列表概念 三 初始化列表特性 1 引用和const 2 混合使用 3 自定义成员情况 四 初始化列表中的初始化顺序 五 总结 一 引入 构造函数体赋值 class Date { public:Date(int year, int month, int day){_year year;_month month;_day day;} priv…

Word软件手动安装Zotero插件

文章目录 Word软件手动安装Zotero插件方法一方法二 参考资料 Word软件手动安装Zotero插件 方法一 关闭word在zotero中依次点击编辑—首选项—引用—文字编辑软件—重新安装加载项Microsoft word 方法二 寻找Zotero.dotm存储位置, 例如D:\Program Files\Zotero\ext…

Qt DragDrop拖动与放置

本文章从属于 Qt实验室-CSDN博客系列 拖放操作包括两个动作:拖动(drag)和放下(drop或称为放置)。 拖动允许 对于要拖出的窗口或控件,要setDragEnabled(true) 对于要拖入的窗口或控件,要setAcceptDrops(true) 下面以一个具体的用例进行说…

Accelerate 0.24.0文档 二:DeepSpeed集成

文章目录 一、 DeepSpeed简介二、DeepSpeed集成(Accelerate 0.24.0)2.1 DeepSpeed安装2.2 Accelerate DeepSpeed Plugin2.2.1 ZeRO Stage-22.2.2 ZeRO Stage-3 with CPU Offload2.2.3 accelerate launch参数 2.3 DeepSpeed Config File2.3.1 ZeRO Stage-…

什么是 IT 资产管理(ITAM),以及它如何简化业务

IT 资产管理对任何企业来说都是一项艰巨的任务,但使用适当的工具可以简化这项任务,例如,IT 资产管理软件可以为简化软件和硬件的管理提供巨大的优势。 什么是 IT 资产管理 IT 资产管理(ITAM)是一组业务实践&#xff…

【3dMax室内照明】如何在V-ray中设置照明分析?

如何在V-ray中设置照明分析? 在3dMax的V-Ray Next中添加了新的“照明分析”工具,以帮助您测量和分析场景中的灯光级别。您将能够创建假彩色热图和数据覆盖,以显示亮度(以坎德拉为单位)或照度(以勒克斯为单位…

每天一点python——day67

#每天一点Python——67 #字符串判断方法:如图: #①判断指定字符串是否为合法标识符 shello,computer print(s.isidentifier()) #输出为False,不是合法标识符,这是因为标识符是由字母,数字,下划线组成&#…

安卓调用手机邮箱应用发送邮件

先来看看实现效果&#xff1a; 也不过多介绍了&#xff0c;直接上代码&#xff1a; private void openMail() {Uri uri Uri.parse("mailto:" "");List<ApplicationInfo> applicationInfoList getPackageManager().getInstalledApplications(Packa…

DPU国产生态版图又双叒扩大了

DPU朋友圈迎来30新伙伴&#xff01;近期&#xff0c;中科驭数已与联想、中科可控、统信、欧拉、龙蜥社区、新支点、亚信科技、人大金仓、瀚高、南大通用、GreatSQL、阿里云、曙光云等超30家关键厂商完成兼容性互认证。测试报告显示&#xff0c;中科驭数DPU系列产品在产品兼容性…

好消息!2023年汉字小达人市级比赛在线模拟题大更新:4个组卷+11个专项,助力孩子更便捷、有效、有趣地备赛

自从《中文自修》杂志社昨天发通知&#xff0c;官宣了2023年第十届汉字小达人市级比赛的日期和安排后&#xff0c;各路学霸们闻风而动&#xff0c;在自己本就繁忙的日程中又加了一项&#xff1a;备赛汉字小达人市级比赛&#xff0c;11月30日&#xff0c;16点-18点。 根据这几年…