DNS域名解析服务

1.概述

1.1.产生原因

        IP 地址:是互联网上计算机唯一的逻辑地址,通过IP 地址实现不同计算机之间的相互通信,每台联网计算机都需要通过I 地址来互相联系和分别,但由于P 地址是由一串容易混淆的数字串构成,人们很难记忆所有计算机的 P 地址,这样对于我们日常工作生活访问不同网站是很困难的。
        基于这种背景,人们在IP 地址的基础上又发展出了一种更易识别的符号化标识,这种标识由人们自行选择的字母和数字构成,相比IP 地址更易被识别和记忆,逐渐代替P 地址成为互联网用户进行访问互联的主要入口。这种符号化标识就是域名

        域名虽然更易被用户所接受和使用,但计算机只能识别纯数字构成的IP 地址,不能直接读取域名。因此要想达到访问效果,就需要将域名翻译成IP 地址。而 DNS 域名解析承担的就是这种翻译效果

1.2.作用:

        DNS(Domain Name System)是互联网上的一项服务,用于将域名和IP地址进行相互映射使人更方便的访问互联网

        正向解析:域名->IP

        反向解析:IP->域名

1.3.连接方式

DNS使用53端口监听网络

查看方法:

        DNS默认以UDP这个较快速的数据传输协议来查询,但没有查询到完整的信息时,就会再次以TCP协议重新查询则启动DNS时,会同时启动TCP以及UDP的port53

[root@server ~]# cat /etc/services  # 存放已经安装的服务的端口号

复习:以学习到的端口号

        htp:21/20

        ssh:22

        远程登陆协议:23

        DNS:53

        http:80

        https:443

        ntp:123

1.4因特网的域名结构

1.4.1.拓扑:

        由于因特网的用户数量较多,则因特网命名时采用层次树状结构的命名方法

        域名(domain name): 任何一个连接在因特网上的主机或路由器,都有一个唯一的层次结构的.名称

        域 (domain): 是名字空间中一个可被管理的划分结构

        注意:域名只是逻辑概念,并不代表计算机所在的物理地点

1.4.2.分类

        国家顶级域名: 采用IS03166的规定,如:cn代表中国,us代表美国,uk代表英国,等等。国家域名又常记为CCTLD(country code top-evel domains,cc表示国家代码contry-code)通用顶级域名:最常见的通用顶级域名有7个
         com(公司企业)
         net(网络服务机构)
         org(非营利组织)
         int(国际组织)
         gov(美国的政府部门)
         mil(美国的军事部门)

        基础结构域名(infrastructure domain): 这种顶级域名只有一个,即arpa,用于反向域名解析,因此称为反向域名

1.4.3.域名服务器类型划分

组织架构:

        根域名服务器: 最高层次的域名服务器,所有的根域名服务器都知道所有的顶级域名服务器的域名和IP地址。本地域名服务器要对因特网上任何一个域名进行解析,只要自己无法解析,就首先求助根域名服务器。则根域名服务器是最重要的域名服务器。假定所有的根域名服务器都瘫痪了,那么整个DNS系统就无法工作。所以根域名服务器并不直接把待查询的域名直接解析出IP地址,而是告诉本地域名服务器下一步应当找哪一个顶级域名服纸器进行查询。

        (用于管理所有的域名解析服务  ,但不直接负责域名解析。存储所有的域名解析记录,但不直接进行域名解析)

        在与现有IPv4根服务器体系架构充分兼容基础上,由我国下一代互联网国家工程中心领衔发起的“雪人计划”于2016年在美国、日本、印度、俄罗斯、德国、法国等全球16个国家完成25台Pv6(互联网协议第六版)根服务器架设,事实上形成了13台原有根加25台IPv6根的新格局为建立多边、民主、透明的国际互联网治理体系打下坚实基础。中国部署了其中的4台,由1台主根服务器和3台辅根服务器组成,打破了中国过去没有根服务器的困境。

        顶级域名服务器:负责管理在该顶级域名服务器注册的二级域名
        权限域名服务器:负责一个””的域名服务器(如下图的:openlab.com

        本地域名服务器: 本地域名服务器不属于域名服务器的层次结构,当主机发出DNS查询时,这个查询报文就发送给本地域名服务器
        为了提高域名服务器的可靠性,DNS域名服务器都把数据复制到几个域名服务器来保存,如:

                主服务器:在特定区域内具有唯一性,负责维护该区域内的域名与IP 地址之间的对应关系(真正干活的)

                从服务器: 从主服务器中获得域名与P 地址的对应关系并进行维护,以防主服务器宕机等情况(打下手的)

                缓存服务器: 通过向其他域名解析服务器查询获得域名与IP 地址的对应关系,并将经常查询的域名信息保存到服务器本地,以此来提高重复查询时的效率,一般部署在企业内网的网关位置,用于加速用户的域名查询请求

2. DNS域名解析过程

2.1.分类:

        递归解析:DNS 服务器在收到用户发起的请求时,必须向用户返回一个准确的查询结果。如果DNS 服务器本地没有存储与之对应的信息,则该服务器需要询问其他服务器,并将返回的查询结果提交给用户
        迭代解析(反复):DNS 服务器在收到用户发起的请求时,并不直接回复查询结果,而是告诉另一台DNS 服务器的地址,用户再向这台 DNS 服务器提交请求,依次反复,直到返回查询结果

2.2.解析图:

2.2.1.图:

2.2.2.过程分析

        第一步:在浏览器中输入www.google.com 域名,本地电脑会检查浏览器缓存中有没有这个域名对应的解析过的IP 地址,如果缓存中有,这个解析过程就结束。浏览器缓存域名也是有限制的,不仅浏览器缓存大小有限制,而且缓存的时间也有限制,通常情况下为几分钟到几小时不等,域名被缓存的时间限制可以通过 TTL 属性来设置。这个缓存时间太长和太短都不太好,如果时间太长,一旦域名被解析到的IP 有变化,会导致被客户端缓存的域名无法解析到变化后的P 地址,以致该域名不能正常解析,这段时间内有一部分用户无法访问网站。如果设置时间太短,会导致用户每次访问网站都要重新解析一次域名

        第二步:如果浏览器缓存中没有数据,浏览器会查找操作系统缓存中是否有这个域名对应的 DNS解析结果。其实操作系统也有一个[域名解析]的过程,在 Linux 中可以通过 /etc/hosts 文件来设置,而在windows 中可以通过配置 C:WindowslSystem32\driversletclhosts 文件来设置,用户可以将任何域名解析到任何能够访问的IP 地址。例如,我们在测试时可以将一个域名解析到一台测试服务器上,这样不用修改任何代码就能测试到单独服务器上的代码的业务逻辑是否正确。正是因为有这种本地 DNS 解析的规程,所以有黑客就可能通过修改用户的域名来把特定的域名解析到他指定的IP 地址上,导致这些域名被劫持

        第三步:前两步是在本地电脑上完成的,若无法解析时,就要用到我们网络配置中的“DNS 服务器地址”了。操作系统会把这个域名发送给这个本地 DNS 服务器。每个完整的内网通常都会配置本地 DNS 服务器,例如用户是在学校或工作单位接入互联网,那么用户的本地 DNS 服务器肯定在学校或工作单位里面。它们一般都会缓存域名解析结果,当然缓存时间是受到域名的失效时间控制的。大约 80% 的域名解析到这里就结束了,后续的 DNS 迭代和递归也是由本地 DNS服务器负责

        第四步:如果本地 DNS 服务器仍然没有命中,就直接到根 DNS 服务器请求解析

        第五步:根 DNS 服务器返回给本地 DNS 域名服务器一个顶级 DNS 服务器地址,它是国际顶级域名服务器,如.com、.cn、.org 等,全球只有 13 台左右

        第六步:本地 DNS服务器再向上一步获得的顶级DNS 服务器发送解析请求

        第七步: 接受请求的顶级 DNS 服务器查找并返回此域名对应的 Name Server 域名服务器的地址,这个 Name Server 服务器就是我要访问的网站域名提供商的服务器,其实该域名的解析任务就是由域名提供商的服务器来完成。比如我要访问 www.baidu.com,而这个域名是从A公司注册获得的,那么A公司上的服务器就会有 www.baidu.com 的相关信息

        第八步:返回该域名对应的IP 和 TTL 值,本地 DNS 服务器会缓存这个域名和IP 的对应关系缓存时间由 TTL 值控制
        第九步: Name Server 服务器收到查询请求后再其数据库中进行查询,找到映射关系后将其IP地址返回给本地DNS服务器

        第十步: 本地DNS服务器把解析的结果返回给本地电脑,本地电脑根据 TTL 值缓存在本地系统缓存中,域名解析过程结束在实际的 DNS 解析过程中,可能还不止这 10 步,如 Name Server 可能有很多级,或者有一个 GTM 来负载均衡控制,这都有可能会影响域名解析过程

注意:

            从客户端到本地DNS服务器是属于递归查询

            DNS服务器之间使用的交互查询就是迭代查

        114.114.114.114是国内移动、电信和联通通用的DNS,手机和电脑端都可以使用,干净无广告,解析成功率相对来说更高,国内用户使用的比较多,而且速度相对快、稳定,是国内用户上网常用的DNS。

        223.5.5.5和223.6.6.6是阿里提供的免费域名解析服务器地址

        8.8.8.8是GOOGLE公司提供的DNS,该地址是全球通用的,相对来说,更适合国外以及访问国外网站的用户使用

3. 搭建DNS域名解析服务器

3.1.概述

        伯克利因特网域名解析服务是一种全球使用最BIND: Berkeley Internet Name Domain广泛的、最高效的、最安全的域名解析服务程序

3.2.安装软件

[root@server ~]# yum   install  bind -y

3.3.bind服务中三个关键文件

        /etc/named.conf:主配置文件,共59行,去除注释和空行之和有效行数仅30行左右,用于设置bind服务程序的运行 (负责全局性配置,服务是否启动,具体的监听端口号
        /etc/named.rfc1912.zones : 区域配置文件 (zone) ,用于保存域名和IP地址对应关系文件的所在位置,类似于图书目录,当需要修改域名与IP映射关系时需要在此文件中查找相关文件位置(存储具体解析记录文件的位置
        /var/named 目录: 数据配置文件目录,该目录存储保存域名和IP地址映射关系的数据文件

[root@server ~]# vim /var/named/named.localhost      # 域名解析具体记录的数据库文件

3.4主配置文件分析

主配置文件共4部分组成

        options{}

        logging{}

        zonef{}

        include
常用参数:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/143546.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

labview实现仪器的控制visa

*IDN? 是识别大多数仪器的查询指令。仪器会回应一个用于描述仪器的识别字符串。如果仪器不接受该指令,请在仪器手册中查询仪器能识别的指令列表。 如下图所示: 程序如下:

【汇编】计算机的组成

文章目录 前言一、计算机的基本组成1.1 中央处理器(CPU)1.2 内存指令和数据存储的位置计算机中的存储单元计算机中的总线地址总线数据总线控制总线 1.3 输入设备和输出设备1.4 存储设备 二、计算机工作原理三、计算机的层次结构总结 前言 计算机是现代社…

容器化nacos部署并实现服务发现(gradle)

1.如何容器化部署mysql 2. 如何容器化部署nacos 为不暴露我的服务器地址,本文全部使用localhost来代替服务器地址,所有的localhost都应该调整为你自己的服务器地址。 为不暴露我的服务器地址,本文全部使用localhost来代替服务器地址&#x…

Centos上删除文件及目录的命令积累

01-如果我想删除Centos上当前目录下的文件 test06-2023-11-14-01.sql 该怎么操作? 答:如果你想删除CentOS上当前目录下的文件 test06-2023-11-14-01.sql,可以使用 rm 命令。以下是删除文件的基本语法: rm test06-2023-11-14-01.s…

《QT从基础到进阶·二十三》弹窗提示框QMessageBox和QCloseEvent事件

1、正常信息提示 QMessageBox::information(NULL, "Title", "Content", QMessageBox::Yes | QMessageBox::No, QMessageBox::Yes);消息框按钮判断: if(QMessageBox::Ok QMessageBox::warning(this,"温馨提示","是否保存设置?…

BGP路由控制实验

目录 一、实验拓扑 二、实验需求 三、实验步骤 1、IP地址配置 2、As 200 内部配置OSPF 3、建立BGP邻居关系 4、宣告网段,在BGP中传递网段 5、通过修改MED 使 R1 到达 192.168.2.0/24 网段的路由经过 R3 6、通过修改Preferred-value 属性,使 R4 …

6.6二叉树的最大深度(LC104-E)、N叉树的最大深度(LC559-E)

二叉树的最大深度: 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 二叉树的最大深度二叉树的高度 算法: 这道题既可以求深度,也可以直接求高度。不过高度和深度用的遍历方式不同。 二叉树写代码之前要确定遍历顺序…

从零开始,掌握Nacos搭建的艺术(单点、集群、docker-compose)

🎏:你只管努力,剩下的交给时间 🏠 :小破站 从零开始,掌握Nacos 前言:前提:建表语句第一: 单节点搭建:第二: 集群搭建:第三&#xff1a…

BUUCTF 来首歌吧 1

BUUCTF:https://buuoj.cn/challenges 题目描述: 密文: 下载附件,解压得到一个.wav音频文件。 解题思路: 1、得到一个音频文件,放到Audacity看看。看到有两条音轨,放大上面的那条音轨,看到这…

Shiro快速入门之三

一、前言 接Shiro快速入门之二,上篇侧重于介绍认证,这篇介绍一下Shiro的授权,先初始化5张表的数据。 注:创建三条权限记录,一个admin角色分配查询和添加用户权限,一个账户qingcai18036授予管理员角色。 二…

python数据结构与算法-04_队列

队列和栈 前面讲了线性和链式结构,如果你顺利掌握了,下边的队列和栈就小菜一碟了。因为我们会用前两章讲到的东西来实现队列和栈。 之所以放到一起讲是因为这两个东西很类似,队列是先进先出结构(FIFO, first in first out), 栈是…

android studio开发flutter应用,使用mumu模拟器调试软件

安装好mumu模拟器,先打开网易mumu模拟器的开发者模拟。系统应用 > 设置 > 关于手机 > 版本号 多点击几次调出开发者模式: 然后在android studio中刷新设备列表,就能看到新设备了: 如何确定这个设备就是你的mumu模拟器呢…

2012年11月10日 Go生态洞察:Go语言三周年回顾

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…

预览PDF并显示当前页数

这里写目录标题 步骤实例实例效果图 步骤 1.安装依赖 npm install --save vue-pdf2.在需要的页面&#xff0c;引入插件 import pdf from vue-pdf3.使用 单页pdf可以直接使用 <pdf :src"获取到的pdf地址"></pdf>多页pdf通过循环实现 html标签部分 &l…

电子零部件工厂的WMS系统:业务特点、产品特点与优势

一、电子零部件工厂的业务特点 电子零部件工厂的业务涉及各种电子元器件的生产、组装和配送。其业务特点包括&#xff1a; 高度复杂性&#xff1a;电子零部件工厂的生产流程涉及多种原材料、半成品和成品&#xff0c;每种产品都有不同的规格、属性及存储要求。 严格的质量控…

基于Rabbitmq和Redis的延迟消息实现

1 基于Rabbitmq延迟消息实现 支付时间设置为30&#xff0c;未支付的消息会积压在mq中&#xff0c;给mq带来巨大压力。我们可以利用Rabbitmq的延迟队列插件实现消息前一分钟尽快处理 1.1定义延迟消息实体 由于我们要多次发送延迟消息&#xff0c;因此需要先定义一个记录消息…

Jenkins 构建CICD

GitLab GitLab安装 https://gitlab.cn/install/?versionce CentOS 下安装 1. 安装和配置必须的依赖项 在 CentOS 7上&#xff0c;下面的命令也会在系统防火墙中打开 HTTP、HTTPS 和 SSH 访问。这是一个可选步骤&#xff0c;如果您打算仅从本地网络访问极狐GitLab&#xf…

【极客时间-系列教程】Vim 实用技巧必知必会-基本概念和基础命令:应对简单的编辑任务

vim很强大&#xff0c;但它的入门确实是比较高&#xff0c;对于初学者来说&#xff0c;怎么退出都是一件很难的事情&#xff0c; 不管你有没有遇到过&#xff0c;反正我是遇到过退出比较难的问题 首先介绍几个常用的命令和按键 :q! 退出不保存:w 写入不退出:r 读文件:wq 写入…

Android面试官の小抄,可能是东半球最好的

面试官的小抄&#xff0c;Android面试&进阶一网打尽&#xff0c;让一部分人先学起来 背景 作为一名客户端开发者&#xff0c;能够明显的感觉到小程序这些年对原生市场带来的压迫感&#xff0c;比如现在的创业公司都是小程序探路&#xff0c;成熟了再推进客户端&#xff0…