Rust编程中的共享状态并发执行

1.共享状态并发

虽然消息传递是一个很好的处理并发的方式,但并不是唯一一个。另一种方式是让多个线程拥有相同的共享数据。在学习Go语言编程过程中大家应该听到过一句口号:"不要通过共享内存来通讯"。

在某种程度上,任何编程语言中的信道都类似于单所有权,因为一旦将一个值传送到信道中,将无法再使用这个值。共享内存类似于多所有权:多个线程可以同时访问相同的内存位置。第十五章介绍了智能指针如何使得多所有权成为可能,然而这会增加额外的复杂性,因为需要以某种方式管理这些不同的所有者。Rust 的类型系统和所有权规则极大的协助了正确地管理这些所有权。作为一个例子,让我们看看互斥器,一个更为常见的共享内存并发原语。

互斥器mutex)是 mutual exclusion 的缩写,也就是说,任意时刻,其只允许一个线程访问某些数据。为了访问互斥器中的数据,线程首先需要通过获取互斥器的 lock)来表明其希望访问数据。锁是一个作为互斥器一部分的数据结构,它记录谁有数据的排他访问权。因此,我们描述互斥器为通过锁系统 保护guarding)其数据。

互斥器以难以使用著称,因为你不得不记住:

  1. 在使用数据之前尝试获取锁。

  2. 处理完被互斥器所保护的数据之后,必须解锁数据,这样其他线程才能够获取锁。

作为一个现实中互斥器的例子,想象一下在某个会议的一次小组座谈会中,只有一个麦克风。如果一位成员要发言,他必须请求或表示希望使用麦克风。一旦得到了麦克风,他可以畅所欲言,然后将麦克风交给下一位希望讲话的成员。如果一位成员结束发言后忘记将麦克风交还,其他人将无法发言。如果对共享麦克风的管理出现了问题,座谈会将无法如期进行!

正确的管理互斥器异常复杂,这也是许多人之所以热衷于信道的原因。然而,在 Rust 中,得益于类型系统和所有权,我们不会在锁和解锁上出错。

2.Mutex<T>的API

作为展示如何使用互斥器的例子,让我们从在单线程上下文使用互斥器开始, 看下面的代码:

use std::sync::Mutex;

fn main() {
    let m = Mutex::new(5);

    {
        let mut num = m.lock().unwrap();
        *num = 6;
    }

    println!("m = {:?}", m);
}

像很多类型一样,我们使用关联函数 new 来创建一个 Mutex<T>。使用 lock 方法获取锁,以访问互斥器中的数据。这个调用会阻塞当前线程,直到我们拥有锁为止。

如果另一个线程拥有锁,并且那个线程 panic 了,则 lock 调用会失败。在这种情况下,没人能够再获取锁,所以这里选择 unwrap 并在遇到这种情况时使线程 panic。

一旦获取了锁,就可以将返回值(在这里是num)视为一个其内部数据的可变引用了。类型系统确保了我们在使用 m 中的值之前获取锁。m 的类型是 Mutex<i32> 而不是 i32,所以 必须 获取锁才能使用这个 i32 值。我们是不会忘记这么做的,因为反之类型系统不允许访问内部的 i32 值。

Mutex<T> 是一个智能指针。更准确的说,lock 调用 返回 一个叫做 MutexGuard 的智能指针。这个智能指针实现了 Deref 来指向其内部数据;其也提供了一个 Drop 实现当 MutexGuard 离开作用域时自动释放锁,为此,我们不会忘记释放锁并阻塞互斥器为其它线程所用的风险,因为锁的释放是自动发生的。

丢弃了锁之后,可以打印出互斥器的值,并发现能够将其内部的 i32 改为 6。

3.在线程间共享Mutex<T>

现在让我们尝试使用 Mutex<T> 在多个线程间共享值。我们将启动十个线程,并在各个线程中对同一个计数器值加一,这样计数器将从 0 变为 10。看下面的代码:

use std::sync::Mutex;
use std::thread;

fn main() {
    let counter = Mutex::new(0);
    let mut handles = vec![];

    for _ in 0..10 {
        let handle = thread::spawn(move || {
            let mut num = counter.lock().unwrap();

            *num += 1;
        });
        handles.push(handle);
    }

    for handle in handles {
        handle.join().unwrap();
    }

    println!("Result: {}", *counter.lock().unwrap());
}

这里创建了一个 counter 变量来存放内含 i32Mutex<T>, 接下来遍历 range 创建了 10 个线程。使用了 thread::spawn 并对所有线程使用了相同的闭包:它们每一个都将调用 lock 方法来获取 Mutex<T> 上的锁,接着将互斥器中的值加一。当一个线程结束执行,num 会离开闭包作用域并释放锁,这样另一个线程就可以获取它了。

在主线程中,我们收集了所有的 join 句柄, 调用它们的 join 方法来确保所有线程都会结束。这时,主线程会获取锁并打印出程序的结果。

编译上面的代码, Rust编译器报了一个错误:

错误信息表明 counter 值在上一次循环中被移动了。所以 Rust 告诉我们不能将 counter 锁的所有权移动到多个线程中。下面来看看如何修复这个错误。

4.多线程和多所有权

我们先尝试将Mutex<T>封装进Rc<T>中并在将所有权移入线程之前克隆Rc<T>,看下面代码:

use std::rc::Rc;
use std::sync::Mutex;
use std::thread;

fn main() {
    let counter = Rc::new(Mutex::new(0));
    let mut handles = vec![];

    for _ in 0..10 {
        let counter = Rc::clone(&counter);
        let handle = thread::spawn(move || {
            let mut num = counter.lock().unwrap();

            *num += 1;
        });
        handles.push(handle);
    }

    for handle in handles {
        handle.join().unwrap();
    }

    println!("Result: {}", *counter.lock().unwrap());
}

再一次编译代码,纳尼, 居然又报了另一个错误, 成年人的崩溃谁能懂:

Rc<Mutex<i32>>` cannot be sent between threads safely`。这个错误编译器告诉我们原因是:`the trait `Send` is not implemented for `Rc<Mutex<i32>>

Rc<T> 并不能安全的在线程间共享。当 Rc<T> 管理引用计数时,它必须在每一个 clone 调用时增加计数,并在每一个克隆被丢弃时减少计数。Rc<T> 并没有使用任何并发原语,来确保改变计数的操作不会被其他线程打断。在计数出错时可能会导致诡异的 bug,比如可能会造成内存泄漏,或在使用结束之前就丢弃一个值。我们所需要的是一个完全类似 Rc<T>,又以一种线程安全的方式改变引用计数的类型。

5.原子引用计数Arc<T>

在Rust标准库中, 提供了一个名为Arc<T>的类型, 这是一个可以安全的用于并发环境的类型, 字母 “a” 代表 原子性atomic),所以这是一个 原子引用计数atomically reference counted)类型, 将代码修改为:

use std::sync::{Arc, Mutex};
use std::thread;

fn main() {
    let counter = Arc::new(Mutex::new(0));
    let mut handles = vec![];

    for _ in 0..10 {
        let counter = Arc::clone(&counter);
        let handle = thread::spawn(move || {
            let mut num = counter.lock().unwrap();

            *num += 1;
        });
        handles.push(handle);
    }

    for handle in handles {
        handle.join().unwrap();
    }

    println!("Result: {}", *counter.lock().unwrap());
}

再次编译代码, 执行结果如下:

这次终于得到结果10, 程序从0数到10, 虽然过程看上去并不明显, 但我们却学到了很多关于Mutex<T>和线程安全的内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/143350.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

活动通知邀请函H5页面制作源码系统+动感的背景音乐 自定义你想要的页面 源码完全开源可二开 带完整搭建教程

在现代社交活动中&#xff0c;一份精美、个性化的活动邀请函不仅能够展现主办方的品味和诚意&#xff0c;还可以吸引更多的参与者。然而&#xff0c;制作一份精美的活动邀请函需要专业的设计和技术支持&#xff0c;这对于很多非专业人士来说是一个难题。此外&#xff0c;传统的…

mysql之主从复制和读写分离

一、主从复制 1、定义 主mysql上的数据&#xff08;新增或修改库、表里的数据&#xff09;都会同步到从mysql上 2、mysql的主从复制模式&#xff08;面试题&#xff09; &#xff08;1&#xff09;异步复制&#xff08;常用&#xff09;&#xff1a;默认的复制模式。客户端…

网络运维Day15

文章目录 Prometheus简介环境准备配置模板机环境部署阿里镜像源实验环境准备 部署prometheus服务查看及测试 Promethues 被监控端Grafana简介部署 Grafana 服务器修改数据源 监控数据库安装部署Mariadb安装导出器修改 Prometheus服务端配置Grafana配置 总结 Prometheus简介 Pr…

需要买哪些网络设备才能过等保?求解!

随着等保2.0的落地执行&#xff0c;越来越多的企业需要过等保。但不少企业都是第一次过等保&#xff0c;对于等保政策不是很了解&#xff0c;有小伙伴问&#xff0c;需要买哪些网络设备才能过等保&#xff1f;这里我们小编就给大家来简单回答一下&#xff0c;仅供参考哈&#x…

Q learning

Q learning Q Learning是强化学习算法中的一个经典算法。在一个决策过程中&#xff0c;我们不知道完整的计算模型&#xff0c;所以需要我们去不停的尝试。 算法流程 整体流程如下&#xff1a; Q-table 初始化 第一步是创建 Q-table&#xff0c;作为跟踪每个状态下的每个动作…

电商平台api接口对接电商数据平台,获取商品详情页面实时信息须知

随着互联网的发展和普及&#xff0c;电商平台已成为人们日常生活中不可或缺的一部分。而为了保证电商平台的正常运行&#xff0c;平台与开发者之间需要进行数据交互&#xff0c;这便涉及到了电商平台API接口对接的问题。本文将详细介绍电商平台API接口对接的须知事项。 一、了解…

双算法SSL证书

国际算法的优势与挑战 1. RSA算法 RSA算法是一种基于大素数分解的非对称加密算法&#xff0c;长期以来一直是SSL证书的主流选择之一。然而&#xff0c;随着计算能力的提高&#xff0c;RSA算法的密钥长度需要不断增加&#xff0c;以维持足够的安全性。 2. ECC算法 椭圆曲线密…

迅软DSE答疑专业解析:内网遭受攻击的威胁到底有多大

当今数字化时代&#xff0c;企业数据安全已演变为企业生存和发展的至关重要因素。随着信息技术的迅猛发展&#xff0c;企业内网不仅是承载核心数据和信息的关键平台&#xff0c;也成为黑客和恶意软件攻击的主要目标。因此&#xff0c;确保企业数据安全和内网安全已成为企业管理…

ADC内部电源监控

文章目录 前言一、分析芯片手册1、43.5 ADC internal supply monitoring2、11.1.1.1 Chip Control register (CHIPCTL)1&#xff09;SIM_CHIPCTL[ADC_SUPPLY]2&#xff09;SIM_CHIPCTL[ADC_SUPPLYEN] 3、44.4.2 ADC Status and Control Register 1 (SC1A - aSC1P) 二、EB配置1、…

@CacheInvalidate(name = “xxx“, key = “#results.![a+b]“,multi = true)是什么意思

@CacheInvalidate 注解是 JetCache 框架提供的注解,它是由阿里巴巴开源的组织 Alibaba Group 开发和维护的。JetCache 是一款基于注解的缓存框架,提供了丰富的缓存功能和灵活的配置选项,可用于增强应用程序的性能和可扩展性。JetCache 支持多种缓存后端,包括内存缓存、Redi…

Ubuntu22.04源码安装ROS-noetic(ROS1非ROS2),编译运行VINS-MONO

1. Ubuntu22.04源码编译安装ROS-noetic 由于22.04默认安装ROS2&#xff0c;但很多仓库都是基于ROS1的&#xff0c;不想重装系统&#xff0c;参考这两个博客安装了ROS-noetic&#xff1a; 博客1. https://blog.csdn.net/Drknown/article/details/128701624博客2. https://zhua…

(七)Spring源码解析:Spring事务

对于事务来说&#xff0c;是我们平时在基于业务逻辑编码过程中不可或缺的一部分&#xff0c;它对于保证业务及数据逻辑原子性立下了汗马功劳。那么&#xff0c;我们基于Spring的声明式事务&#xff0c;可以方便我们对事务逻辑代码进行编写&#xff0c;那么在开篇的第一部分&…

CRM系统对科技企业有哪些帮助

随着国家政策的倾斜和5G等相关基础技术的发展&#xff0c;中国人工智能产业在各方的共同推动下进入爆发式增长阶段&#xff0c;市场发展潜力巨大。CRM客户管理系统作为当下最热门的企业应用&#xff0c;同样市场前景广阔。那么&#xff0c;CRM系统对科技企业有哪些帮助&#xf…

Python开源项目VQFR——人脸重建(Face Restoration),模糊清晰、划痕修复及黑白上色的实践

Python Anaconda 的安装等请参阅&#xff1a; Python开源项目CodeFormer——人脸重建&#xff08;Face Restoration&#xff09;&#xff0c;模糊清晰、划痕修复及黑白上色的实践https://blog.csdn.net/beijinghorn/article/details/134334021 VQFR也是 腾讯 LAB 的作品&…

ninja 编译介绍

首先献上官方链接 https://ninja-build.org/manual.html Ninja 何以存在&#xff1f; 从官方文档看出&#xff0c;编译很快&#xff01;怎么实现的呢&#xff1f;&#xff1f;所以&#xff0c;还是值得了解一下的&#xff0c;继续~ 编译优势 项目中使用 具体语法&#xff0c;…

Find My滑雪板|苹果Find My技术与滑雪板结合,智能防丢,全球定位

滑雪板运动是一项越来越受年轻人青睐的运动&#xff0c;随着年轻人的消费能力不断提高&#xff0c;滑雪板市场也会得到更多的机会和发展空间。滑雪板市场规模是一个不断增长的市场&#xff0c;目前市场规模已经相当大。根据统计数据显示&#xff0c;全球滑雪板市场规模约为26亿…

多语言外贸跨境商城源码/支持多商家入驻/一键采集铺货/后台下单等

随着全球化的不断深入&#xff0c;多语言外贸跨境商城已成为全球贸易的新趋势。我们致力于打造一个支持多商家入驻、一键采集铺货、后台下单等多项功能的电商平台&#xff0c;帮助您轻松开启全球贸易之旅。 一、多语言支持&#xff0c;让您的事业走向世界 我们提供多语言支持&a…

map与set使用方法总结

一&#xff0c;map与set简介 map与set本质上便是一个关联容器&#xff0c;它们的底层都是一个叫做红黑树的数据结构。当然&#xff0c;所谓的红黑树又是一个二叉搜索树。所以追根溯源&#xff0c;map和set都是用二叉搜索树&#xff08;红黑树&#xff09;实现的容器。 在C中&am…

【工程部署】在RK3588上部署OCR(文字检测识别)(DBNet+CRNN)

硬件平台&#xff1a; 1、firefly安装Ubuntu系统的RK3588&#xff1b; 2、安装Windows系统的电脑一台&#xff0c;其上安装Ubuntu18.04系统虚拟机。 参考手册&#xff1a;《00-Rockchip_RKNPU_User_Guide_RKNN_API_V1.3.0_CN》 《RKNN Toolkit Lite2 用户使用指南》 1、文…

【kafka】windows安装启动

1.zookeeper的安装与启动 快速打开window powershell&#xff1a; windowx&#xff0c;选 2.kafka下载 —注意kafka和zookeeper需要版本匹配 安装路径 注意&#xff0c;kafka安装目录不能有空格。文件下载到&#xff1a; D:\Program_Files\kafka_2.12-3.6.0新建logs文件 修改c…