图的存储及基本操作总结(邻接矩阵、邻接表)及C/C++代码实现

文章目录

  • 前言
  • 一、邻接矩阵
    • 1.概念
    • 2.图像示例
    • 3. 代码实现
    • 注意
    • 邻接矩阵的特点
  • 二、邻接表
    • 1.概念
    • 2.图像示例
    • 3.代码实现
    • 邻接表的特点


前言

图是一种比较复杂的数据结构,每个结点之间可以有多种关系。
所以,一个图可以呈现出千奇百怪的形式。
对于不同的形式的图,我们可以用不同的存储方式来进行存储。

比如说:

  • 对于边比较少而结点很多的图,我们需要把更多的存储空间用于存放顶点的信息,如果两个顶点之间不存在边,那么就不需要花费存储空间来说明这个地方没有边。
  • 对于边比较多而顶点相对没那么多的图,在每一个顶点之间,都很有可能存在边,如果每一条边都单独考虑,会显得比较繁琐。
  • 对于插入和删除边的操作做的比较多的图,我们更希望更快的找到这条边的信息在那个位置,于是具有随机存取性质的数据结构更加实用。

像这样的例子还有很多,下面总结一下最常用的两种存储方式——邻接矩阵和邻接表


一、邻接矩阵

1.概念

所谓邻接矩阵存储,是指用一个一维数组存储图中顶点的信息,用一个二维数组存储图中边的信息(即各顶点之间的邻接关系),存储顶点之间邻接关系的二维数组称为邻接矩阵。

  • 顶点数为n的图G的邻接矩阵为   n × n \ n×n  n×n的二维数组,如果记顶点编号为v1, v2, …, vn,则对于顶点vi和vj,若存在一条边(vi, vj)∈E,则A[i][j] = 1, 否则A[i][j] = 0,即

A [ i ] [ j ] = { 1 ,  若  ( v i , v j )  或  ⟨ v i , v j ⟩  是  E ( G )  中的边  0 ,  若  ( v i , v j )  或  ⟨ v i , v j ⟩  不是  E ( G )  中的边  A[i][j]=\left\{\begin{array}{ll} 1, & \text { 若 }\left(v_{i}, v_{j}\right) \text { 或 }\left\langle v_{i}, v_{j}\right\rangle \text { 是 } E(G) \text { 中的边 } \\ 0, & \text { 若 }\left(v_{i}, v_{j}\right) \text { 或 }\left\langle v_{i}, v_{j}\right\rangle \text { 不是 } E(G) \text { 中的边 } \end{array}\right. A[i][j]={1,0,  (vi,vj)  vi,vj  E(G) 中的边   (vi,vj)  vi,vj 不是 E(G) 中的边 

  • 对于带权图而言,若顶点v,和 v;之间有边相连,则邻接矩阵中对应项存放着该边对应的权值,若顶点V和V不相连,则用   ∞ \ \infty  来代表这两个顶点之间不存在边:

A [ i ] [ j ] = { w i j ,  若  ( v i , v j )  或  ⟨ v i , v j ⟩  是  E ( G )  中的边  0  或  ∞ ,  若  ( v i , v j )  或  ⟨ v i , v j ⟩  不是  E ( G )  中的边  A[i][j]=\left\{\begin{array}{ll} w_{i j}, & \text { 若 }\left(v_{i}, v_{j}\right) \text { 或 }\left\langle v_{i}, v_{j}\right\rangle \text { 是 } E(G) \text { 中的边 } \\ 0 \text { 或 }\infty, & \text { 若 }\left(v_{i}, v_{j}\right) \text { 或 }\left\langle v_{i}, v_{j}\right\rangle \text { 不是 } E(G) \text { 中的边 } \end{array}\right. A[i][j]={wij,0  ,  (vi,vj)  vi,vj  E(G) 中的边   (vi,vj)  vi,vj 不是 E(G) 中的边 

2.图像示例

  • 无向图和它的邻接矩阵可以表示为下图形式:
    在这里插入图片描述
  • 有向图和它的邻接矩阵可以表示为下图形式:
    在这里插入图片描述

3. 代码实现

图的邻接矩阵代码实现:

#include<iostream>
#include<string>
#include<assert.h>
using namespace std;

#define MaxVertexNum 100		//顶点数目的最大值
#define INF 0xfffffff
//顶点的数据类型
typedef string VertexType;	
//带权图中边上权值的数据类型	
typedef int EdgeType;
//定义图的类型 
typedef enum GraphType{
	UDG, DG, UDN, DN
}GraphType;	
//邻接矩阵数据结构定义	
typedef struct{
	VertexType Vex[MaxVertexNum];				//顶点表
	EdgeType Edge[MaxVertexNum][MaxVertexNum];	//边表
	int vexnum, arcnum;							//图的当前顶点数和弧数
	GraphType type;								//标记图的类型 
}MGraph, *graph;

void graph_create(MGraph &g);				//图的定义 
int vertex_index(MGraph g, string v);		//返回顶点v的坐标
void graph_add_vertex(MGraph &g, string v);	//添加顶点
bool graph_has_vertex(MGraph &g, string v);	//检查是否存在顶点v
void graph_add_edge(MGraph &g, string v1, string v2);		//添加边 
bool graph_has_edge(MGraph g, string v1, string v2);		//检查是否存在v1->v2的边 
void show_graph(MGraph g);					//打印图 


void graph_create(MGraph &g){	
	string str;
	cout << "请输入要定义的图的类型:" << endl << "UDG(无向图)  DG(有向图)  UDN(无向网)  DN(有向网)" << endl; 
	cin >> str;
	//初始化邻接矩阵 
	for(int i = 0; i < g.vexnum; i++){
		for(int j = 0; j < g.vexnum; j++){
			if(i != j){
				if(str == "UDN" || str == "DN")
					g.Edge[i][j] = INF;
				else g.Edge[i][j] = 0;
			}
			else g.Edge[i][j] = 0;
		}
	}
	if(str == "UDG") g.type = UDG;		//构建无向图
	else if(str == "DG")  g.type = DG;	//构建有向图
	else if(str == "UDN") g.type = UDN;	//构建无向网
	else if(str == "DN")  g.type = DN;	//构建有向网	
}

void graph_add_vertex(MGraph &g, string v){
	if(!graph_has_vertex(g, v)){
		assert(g.vexnum <= MaxVertexNum);
		g.Vex[g.vexnum++] = v;
	}
}
bool graph_has_vertex(MGraph &g, string v){
	for(int i = 0; i < g.vexnum; i++)
		if(g.Vex[i] == v) return true;
	return false;
}

void graph_add_edge(MGraph &g, string v1, string v2){
	if(!graph_has_edge(g, v1, v2)){
		int start = vertex_index(g, v1);
		int end = vertex_index(g, v2);
		if(g.type == UDG){
			g.Edge[start][end] = 1;
			g.Edge[end][start] = 1;
		}else if(g.type == DG){
			g.Edge[start][end] = 1;
		}else if(g.type == UDN){
			cout << "请输入边的权值:";
			cin >> g.Edge[start][end];
			g.Edge[end][start] = g.Edge[start][end]; 
		}else if(g.type == DN){
			cout << "请输入边的权值:";
			cin >> g.Edge[start][end];
		}
	}
}

bool graph_has_edge(MGraph g, string v1, string v2){
	int start = vertex_index(g, v1);
	int end = vertex_index(g, v2);
	assert(start != -1 && end != -1);
	if(g.type == UDG || g.type == UDN){
		//如果是无向图或无向网 
		if(g.Edge[start][end] != 0 && g.Edge[start][end] != INF) return true;
		if(g.Edge[end][start] != 0 && g.Edge[end][start] != INF) return true;	
	}else if(g.type == DG || g.type == DN){
		//如果是有向图或有向网 
		if(g.Edge[start][end] != 0 && g.Edge[start][end] != INF) return true;
	}
	return false;
}

int vertex_index(MGraph g, string v){
	for(int i = 0; i < g.vexnum; i++){
		if(g.Vex[i] == v) return i;
	}
	return -1;
}

void show_graph(MGraph g) {
	cout << "图的邻接矩阵如下所示:" << endl;
    for(int i = 0; i < g.vexnum; i++){
        //cout << g.Vex[i] << " ";
        for(int j = 0; j < g.vexnum; j++){
            if(g.Edge[i][j] == INF)
                cout << "∞" << " ";
            else
            	cout << g.Edge[i][j] << " ";
        }
        cout << endl;
    }
}

void test(MGraph &g){
	int vexNum = 0, edgeNum = 0;
	string str, str1, str2;
	
	cout << "请输入图的顶点的数量:" << endl;
	cin >> vexNum;
	for(int i = 0; i < vexNum; i++){
		cout << "输入顶点" << i+1 << "的信息:"; 
		cin >> str;
		graph_add_vertex(g, str);
	}
	
	cout << "请输入图的边的数量:" << endl;
	cin >> edgeNum;
	for(int i = 0; i < edgeNum; i++){
		cout << "输入第" << i+1 << "条边的首尾顶点:";
		cin >> str1 >> str2;
		graph_add_edge(g, str1, str2);
	}
}

int main(){
	MGraph g;
	graph_create(g);
	test(g); 
	show_graph(g); 
	
	return 0;
}

当然,还可以根据需求,写一些个性化的函数来丰富图的功能。比如graph_destroy用来销毁图,graph_get_edge来获取边的权值,graph_edges_count计算与顶点v有关系的边的数量……

注意

  • 在简单应用中,可直接用二维数组作为图的邻接矩阵(顶点信息等均可省略)。
  • 当邻接矩阵的元素仅表示相应边是否存在时,EdgeType可采用值为0和1的枚举类型。
  • 无向图的邻接矩阵是对称矩阵,对规模特大的邻接矩阵可采用压缩存储
  • 邻接矩阵表示法的空间复杂度为   O ( n 2 ) \ O(n ^{2})  O(n2),其中n为图的顶点数   ∣ V ∣ \ |V|  V

邻接矩阵的特点

  1. 无向图的邻接矩阵一定是一个对称矩阵(并且唯一)。因此,在实际存储邻接矩阵时只需存储上(或下)三角矩阵的元素
  2. 对于无向图,邻接矩阵的第   i \ i  i行(或第   i \ i  i列)非零元素(或非   0 \ 0  0元素)的个数正好是顶点   i \ i  i的度   T D ( v i ) \ TD(v _{i})  TD(vi)
  3. 对于有向图,邻接矩阵的第   i \ i  i行非零元素(或非   ∞ \ ∞  元素)的个数正好是顶点   i \ i  i的出度   O D ( v i ) \ OD(v _{i})  OD(vi);第   i \ i  i列非零元素(或非   ∞ \ ∞  元素)的个数正好是顶点i的入度   I D ( v i ) \ ID(v _{i})  ID(vi)
  4. 用邻接矩阵存储图,很容易确定图中任意两个顶点之间是否有边相连。但是,要确定图中有多少条边,则必须按行、按列对每个元素进行检测,所花费的时间代价很大
  5. 稠密图适合使用邻接矩阵的存储表示。
  6. 设图   G \ G  G的邻接矩阵为   A \ A  A   A n \ A ^{n}  An的元素   A n [ i ] [ j ] \ A ^{n}[i][j]  An[i][j]等于由顶点   i \ i  i到顶点   j \ j  j的长度为   n \ n  n的路径的数目。该结论了解即可,证明方法请参考离散数学教材。

二、邻接表

1.概念

当一个图为稀疏图时,使用邻接矩阵法显然要浪费大量的存储空间,而图的邻接表法结合了顺序存储和链式存储方法,大大减少了这种不必要的浪费。

  • 所谓邻接表,是指对图   G \ G  G中的每个顶点   v \ v  v建立一个单链表,第   i \ i  i个单链表中的结点表示依附于顶点   v \ v  v的边(对于有向图则是以顶点   v \ v  v为尾的弧),这个单链表就称为顶点   v \ v  v的边表(对于有向图则称为出边表)。
  • 边表的头指针和顶点的数据信息采用顺序存储(称为顶点表),所以在邻接表中存在两种结点:顶点表结点和边表结点。

2.图像示例

  • 顶点表结点的数据结构如下图所示:
    在这里插入图片描述

  • 边表结点的数据结构如下图所示:
    在这里插入图片描述
    顶点表结点顶点域(data)和指向第一条邻接边的指针(firstarc)构成,边表结点(邻接表)由邻接点域(adjvex)和指向下一条邻接边的指针域(nextarc)构成。

  • 无向图和它的邻接表可以表示为下图形式:
    在这里插入图片描述

  • 有向图和它的邻接表可以表示为下图形式:
    在这里插入图片描述

3.代码实现

#include<stdio.h>
#include<stdbool.h>
#include<stdlib.h>
#include<string.h>
//#include<math.h>

#define string char*
#define VertexType string
#define MAXSIZE 100 
#define REALLOCSIZE 50
#define INF 0xfffffff

//边表结点
typedef struct ArcNode{
	int adjvex;		//某条边指向的那个顶点的位置
	ArcNode * next;	//指向下一条弧的指针 
	weight w;		//权值
}ArcNode; 
//顶点表结点
typedef struct VNode{
	VertexType data;	//顶点信息
	ArcNode * first;	//指向第一条依附该顶点的弧的指针
}VNode;
typedef struct GraphRepr{
	VNode * node;		//邻接表
	int vexnum, arcnum;	//图的顶点数和弧数 
}Graph, *graph; 

graph graph_create(void) {
	//初始化一个图的指针 
	graph g = (graph)malloc(sizeof(Graph));
	if(g){
		//初始化邻接表 
		g->node = (VNode*)malloc(MAXSIZE*sizeof(VNode));
		if(!g->node) {
			printf("error\n"); 
			return NULL;
		}
		g->arcnum = g->vexnum = 0;
		return g;
	}
	return NULL;
}

void graph_destroy(graph g) {
    ArcNode *pre, *p;	//定义临时指针 
    char * temp;
	for(int i = 0; i < g->vexnum;i++){
		pre = g->node[i].first;	//指向边表
		temp = g->node[i].data;
		free(temp);
		//等价于链表的销毁
		if(pre != NULL)	{
			p = pre->next;
			while(p != NULL) {
				free(pre);
				pre = p;
				p = pre->next;
			}
			free(pre);
		}
	}
	free(g);
    return;
}

//判断字符串是否相等 
bool is_equal(string s1, string s2){
	//首先判断长度 
	int len_s1 = strlen(s1);
	int len_s2 = strlen(s2);	
	if(len_s1 != len_s2) return false;
	//长度相等后,判断每一个位置的字符 
	for(int i = 0; i < len_s1; i++)
		if(s1[i] != s2[i]) return false;
	return true;
}

void graph_add_vertex(graph g, string v) {	
	if(!graph_has_vertex(g, v)){
		int vlen = strlen(v);
		//判断是否超出邻接表的大小限制 
		if(g->vexnum+1 > MAXSIZE){
			//重新申请一片空间 
			VNode * temp = (VNode*)malloc((g->vexnum+REALLOCSIZE)*sizeof(VNode));
			//将原邻接表的信息复制到新的内存空间 
			for(int i = 0; i < g->vexnum; i++){
				temp[i].data = g->node[i].data;
				temp[i].first = g->node[i].first;
			} 
			g->node = temp;	//新的指针赋给邻接表 
		}
		g->node[g->vexnum].data = (char*)malloc(sizeof(char)*vlen+1);
//		printf("%p\t", strcpy(g->node[g->vexnum].data, v));
//		printf("%p\t", g->node[g->vexnum].data);
//		printf("%p\n", v);
//		int i;
//		for(i = 0; i < vlen; i++)
//			g->node[g->vexnum].data[i] = v[i];
//		v[i] = '\0'; 
		g->node[g->vexnum].first = NULL;		//初始化顶点的依附表结点为空 
		g->vexnum++;
	}	
    return;
}

bool graph_has_vertex(graph g, string v) {
    for(int i = 0; i < g->vexnum; i++)
		if(is_equal(g->node[i].data, v))	//如果能够找到一个顶点的信息为v 
			return true;
	return false;
}

size_t graph_vertices_count(graph g) {
    return g->vexnum;
}

int get_index(graph g, string v){
	for(int i = 0; i < g->vexnum; i++)
		if(is_equal(g->node[i].data, v)) return i+1;	//如果能找到这个结点,返回结点位置
	return -1;	//否则返回-1 
}

void graph_add_edge(graph g, string v1, string v2, weight w){    
	//判断是否存在这两个顶点,如果不存在,添加这些顶点 
	if(!graph_has_vertex(g, v1)) graph_add_vertex(g, v1);
	if(!graph_has_vertex(g, v2)) graph_add_vertex(g, v2); 
	int start = get_index(g, v1);
	int end = get_index(g, v2); 
	//判断是否存在这条边 
	if(!graph_has_edge(g, v1, v2)){	
		//初始化一个边表结点 
		ArcNode * Next = (ArcNode*)malloc(sizeof(ArcNode));
		Next->adjvex = end-1;
		Next->next = NULL;
		Next->w = w;
		//如果start依附的边为空	
		if(g->node[start-1].first == NULL) g->node[start-1].first = Next;
		else{
			ArcNode * temp = g->node[start-1].first;//临时表结点
			while(temp->next) temp = temp->next;	//找到表结点中start-1这个结点的链表的最后一个顶点
			temp->next = Next;						//在该链表的尾部插入这个边表结点 
		}	
		g->arcnum++;	//边的数量++	
	}
    return;
}

bool graph_has_edge(graph g, string v1, string v2) {
    int start = get_index(g, v1);
	int end = get_index(g, v2);
	//如果边表为空,则不存在边 
	if(g->node[start-1].first == NULL) return false;
	
	ArcNode * temp = g->node[start-1].first;	//临时表结点
	while(temp) {
		if(temp->adjvex == end-1) return true;	//如果存在一条v1指向v2的边 
		temp = temp->next;						//指针后移 
	}	
    return false;
}

weight graph_get_edge(graph g, string v1, string v2) {
    double w;
    //如果不存在这条边,返回0 
    if(!graph_has_edge(g, v1, v2)) return 0.0;
    int start = get_index(g, v1);
	int end = get_index(g, v2);
	
	ArcNode * temp = g->node[start-1].first;
	while(temp){
		//找到v1指向v2的边,并返回weight 
		if(temp->adjvex == end-1) return temp->w;
		temp = temp->next;
	} 
	return 0.0;
}

void graph_show(graph g, FILE *output) {
	//先打印每一个顶点信息 
	for(int i = 0; i < g->vexnum; i++){
		fprintf(output, "%s\n", g->node[i].data);
//		printf("%s\n", g->node[i].data);
	}
	//然后打印每一条边 
    for(int i = 0; i < g->vexnum; i++){    	
        ArcNode * Next = g->node[i].first;
        while (Next) {
        	fprintf(output, "%s %s %10.2lf\n", g->node[i].data, g->node[Next->adjvex].data, Next->w);
//        	printf("%s %s %10.2lf\n", g->node[i].data, g->node[Next->adjvex].data, Next->w);
            Next = Next->next;
        }        
    }
    return;
}

邻接表的特点

  1.   G \ G  G无向图,则所需的存储空间为   O ( ∣ V ∣ + 2 ∣ E ∣ ) \ O(|V|+ 2|E|)  O(V+2∣E);若   G \ G  G有向图,则所需的存储空间为   O ( ∣ V ∣ + ∣ E ∣ ) \ O(|V|+ |E|)  O(V+E)。前者的倍数   2 \ 2  2是由于无向图中,每条边在邻接表中出现了两次。
  2. 对于稀疏图,采用邻接表表示将极大地节省存储空间。
  3. 在邻接表中,给定一顶点,能很容易地找出它的所有邻边,因为只需要读取它的邻接表。在邻接矩阵中,相同的操作则需要扫描一行,花费的时间为   O ( n ) \ O(n)  O(n)
  4. 但是,若要确定给定的两个顶点间是否存在边,则在邻接矩阵中可以立刻查到,而在邻接表中则需要在相应结点对应的边表中查找另一结点,效率较低。
  5. 有向图的邻接表表示中,求一个给定顶点的出度只需计算其邻接表中的结点个数;但求其顶点的入度则需要遍历全部的邻接表。因此,也有人采用逆邻接表的存储方式来加速求解给定顶点的入度。当然,这实际上与邻接表存储方式是类似的。
  6. 图的邻接表表示并不唯一,因为在每个顶点对应的单链表中,各边结点的链接次序可以是任意的,它取决于建立邻接表的算法及边的输入次序

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/14232.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java调用webservicer的方法

对于使用 Webservicer的方式&#xff0c;一般采用 Java API调用的方式。Webservicer是一个运行在浏览器中的客户端程序&#xff0c;它可以通过 Webservicer的接口来访问服务器上的服务。 使用 Java调用 Webservicer有两种方式&#xff1a; 下面是一个简单的例子&#xff1a; 2、…

【Vue】学习笔记-初始化脚手架

初始化脚手架 初始化脚手架说明具体步骤脚手架文件结构 初始化脚手架 说明 Vue脚手架是vue官方提供的标准化开发工具&#xff08;开发平台&#xff09;最新版本是4.x文档Vue CLI 具体步骤 如果下载缓慢请配置npm淘宝镜像 npm config set registry http://registry.npm.taoba…

浅谈个人对“孔乙己的长衫“的感受

名人说&#xff1a;往者不可谏&#xff0c;来者犹可追。——《论语微子篇》 创作者&#xff1a;Code_流苏(CSDN) ★温馨提示&#xff1a;以下仅代表个人观点&#xff0c;不代表其它任何人看法。 目录 〇、缘由一、社会对于学历和职业之间的关系认知是怎样的&#xff1f;二、学…

【算法】从x的n次方看递归时间复杂度计算

从x的n次方看递归时间复杂度计算 1.循环 这个问题&#xff0c;最简单的办法是用循环 int pow1(int x,int n) {int result 1;for(int i0;i<n;i){result*x;}return result; }如上算法的时间复杂度为O(N)&#xff0c;但还是不够理想。这时尝试使用递归算法 2.递归1 int po…

51单片机入门

文章目录 一、安装keil5及proteus二、MCS-51单片机结构与原理(一).8051单片机基本组成(二).8051单片机引脚1.电源引脚2.时钟电路引脚3.控制信号引脚4.输入/输出端口 (三) 并行输入/输出端口结构 三、单片机cx51编程基础(一).变量定义(二).数据类型(三).存储类型(四).Cx51语言程…

快手社招Java后端开发岗面试,被问麻了

社招面试是基于你的工作项目来展开问的&#xff0c;比如你项目用了 xxx 技术&#xff0c;那么面试就会追问你项目是怎么用 xxx 技术的&#xff0c;遇到什么难点和挑战&#xff0c;然后再考察一下这个 xxx 技术的原理。 今天就分享一位快手社招面经&#xff0c;岗位是后端开发&…

使用vue.component全局注册组件、props的使用

通过components注册的是私有子组件 例如&#xff1a; 在组件A的 components 节点下&#xff0c;注册了组件F。 则组件F只能用在组件A中;不能被用在组件C中。 注册全局组件 在vue项目的 main.js 入口文件中&#xff0c;通过 Vue.component() 方法&#xff0c;可以注册全局组件…

springboot+vue小区物业管理系统(源码+文档)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的小区物业管理系统。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 &#x1f495;&#x1f495;作者&#xff1a;风…

【2023软考】信息系统监理师与系统集成项目管理工程师哪个更好考?

肯定是系统集成项目管理工程师更好考。 软考信息系统监理师是一项国家级专业职业资格证书&#xff0c;是我国信息技术行业的重要职业资格之一。软考信息系统监理师主要从事信息系统建设项目的监理和管理工作&#xff0c;包括项目前期准备、项目实施阶段和项目验收阶段的监理和…

字符串总结

一、最长公共前缀 1.方法一&#xff1a;横向扫描 class Solution { public:string longestCommonPrefix(vector<string>& strs) {if (!strs.size()) {return "";}string prefix strs[0];int count strs.size();for (int i 1; i < count; i) {prefix…

VS同时调试主程序和子程序工具

VS要想要实现同时调试主程序和子程序&#xff0c;可使用工具 Microsoft Child Process Debugging power Tool 来实现。 我的环境和官方使用说明 环境&#xff1a;VS2019 官方使用说明&#xff1a;Introducing the Child Process Debugging Power Tool - Azure DevOps Blogh…

Shell编程规范与使用

目录 一、Shell脚本概述 1&#xff09;Shell的作用——命令解释器&#xff0c;“翻译官” 2&#xff09;常见shell解释器 3&#xff09;编程语言类型 4&#xff09;Shell脚本 编写脚本代码 Shell脚本的构成 赋予可执行权限 Shell脚本的执行方法 5&#xff09;重定向与…

【学习笔记】unity脚本学习(六)【GUI发展历程、IMGUI控件、Layout自动布局】

目录 unity 界面发展IMGUINGUI其他GUI插件uGUIUI 工具包比较 GUI基础GUI静态变量Unity扩展编辑器屏幕空间的总尺寸Screen.width 和 Screen.height GUI静态函数&#xff08;GUI控件&#xff09;Label图片 Box控件Button与RepeatButtonTextFieldTextAreaPasswordField其他控件 GU…

缓存优化---环境搭建

缓存优化 为什么要使用redis缓存&#xff1f; 问题说明 用户数量多&#xff0c;系统访问大&#xff0c;频繁访问数据库&#xff0c;系统性能下降&#xff0c;用户体验差 环境搭建 maven坐标 在项目中的pom.xml文件中导入spring data redis的maven坐标&#xff1a; <depen…

Java+GeoTools实现WKT数据根据EPSG编码进行坐标系转换

场景 JavaGeoTools(开源的Java GIS工具包)快速入门-实现读取shp文件并显示&#xff1a; JavaGeoTools(开源的Java GIS工具包)快速入门-实现读取shp文件并显示_霸道流氓气质的博客-CSDN博客 在上面实现Java中集成Geotools之后&#xff0c;需求是将WKT数据转换成其他坐标系的W…

web前端实验5

实 验 报 告 课 程 Web前端应用开发 实验项目 Jquery AJAX编程 成 绩 专业班级 班内序号 指导教师 姓 名 学 号 实验日期 实验目的及要求&#xff1a; &#xff08;1&#xff09; 理解和掌握Jquery AJAX的get方式请求 &#xff08;2&#xff09; 理解和掌握Jquery AJAX的pos…

Redis可视化工具-Another Redis Desktop Manager 安装与连接哨兵集群

目录 一、下载安装 1.1 下载 1.2 安装 二、使用 2.1 新建连接 2.2 新增数据 2.3 应用设置 2.3.1深色模式、语言 2.3.2多个连接的颜色标记 一、下载安装 Another Redis DeskTop Manager 是 Redis 可视化管理工具&#xff0c;体积小&#xff0c;完全免费。最重要的是稳定…

低代码平台名声臭,用起来却真香——60%开发者不敢承认

群体盲从意识会淹没个体的理性&#xff0c;个体一旦将自己归入该群体&#xff0c;其原本独立的理性就会被群体的无知疯狂所淹没。——《乌合之众》 不知道从什么时候开始&#xff0c;“低代码不行”的论调充斥着整个互联网圈子&#xff0c;csdn、掘金、知乎、B站、脉脉……到处…

面试华为,花了2个月才上岸,真的难呀····

花2个月时间面试一家公司&#xff0c;你们觉得值吗&#xff1f; 背景介绍 美本计算机专业&#xff0c;代码能力一般&#xff0c;之前有过两段实习以及一个学校项目经历。第一份实习是大二暑期在深圳的一家互联网公司做前端开发&#xff0c;第二份实习由于大三暑假回国的时间比…

32岁阿里P7,把简历改成不知名小公司,学历改成普通本科,工作内容不变,投简历全挂!...

hr靠什么来招人&#xff1f; 一位猎头讲述了自己和朋友打赌的故事&#xff1a; 朋友在阿里云&#xff0c;32岁&#xff0c;P7&#xff0c;他把简历上的公司改成不知名&#xff0c;学历改成普通本科&#xff0c;工作内容不变&#xff0c;结果投其他公司&#xff08;比如京东&…