前言:Hello大家好,我是小哥谈。深度可分离卷积是一种卷积神经网络中的卷积操作,它可以将标准卷积分解为两个较小的卷积操作:深度卷积和逐点卷积。深度卷积是在每个输入通道上分别执行卷积,而逐点卷积是在所有通道上执行卷积。这种分解可以大大减少计算量和参数数量,从而提高模型的效率和准确性。本节课就给大家介绍一下如何在YOLOv5主干网络中引入深度可分离卷积C3模块,希望大家学习之后能够有所收获~!🌈
前期回顾:
前言:Hello大家好,我是小哥谈。深度可分离卷积是一种卷积神经网络中的卷积操作,它可以将标准卷积分解为两个较小的卷积操作:深度卷积和逐点卷积。深度卷积是在每个输入通道上分别执行卷积,而逐点卷积是在所有通道上执行卷积。这种分解可以大大减少计算量和参数数量,从而提高模型的效率和准确性。本节课就给大家介绍一下如何在YOLOv5主干网络中引入深度可分离卷积C3模块,希望大家学习之后能够有所收获~!🌈
前期回顾:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/142012.html
如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!