OpenGL_Learn10(颜色)

1. 颜色

我们在现实生活中看到某一物体的颜色并不是这个物体真正拥有的颜色,而是它所反射的(Reflected)颜色。换句话说,那些不能被物体所吸收(Absorb)的颜色(被拒绝的颜色)就是我们能够感知到的物体的颜色。例如,太阳光能被看见的白光其实是由许多不同的颜色组合而成的(如下图所示)。如果我们将白光照在一个蓝色的玩具上,这个蓝色的玩具会吸收白光中除了蓝色以外的所有子颜色,不被吸收的蓝色光被反射到我们的眼中,让这个玩具看起来是蓝色的。下图显示的是一个珊瑚红的玩具,它以不同强度反射了多个颜色。

 

我们将这两个颜色向量作分量相乘,结果就是最终的颜色向量了:

glm::vec3 lightColor(1.0f, 1.0f, 1.0f);
glm::vec3 toyColor(1.0f, 0.5f, 0.31f);
glm::vec3 result = lightColor * toyColor; // = (1.0f, 0.5f, 0.31f);

我们可以看到玩具的颜色吸收了白色光源中很大一部分的颜色,但它根据自身的颜色值对红、绿、蓝三个分量都做出了一定的反射。这也表现了现实中颜色的工作原理。由此,我们可以定义物体的颜色为物体从一个光源反射各个颜色分量的大小。现在,如果我们使用绿色的光源又会发生什么呢?

glm::vec3 lightColor(0.0f, 1.0f, 0.0f);
glm::vec3 toyColor(1.0f, 0.5f, 0.31f);
glm::vec3 result = lightColor * toyColor; // = (0.0f, 0.5f, 0.0f);

2. 创造一个光照场景

场景中有两个东西,一个是物体,一个是光源。

物体就是大正方体,是红色的。

光源点就是小正方体,是白色的。

因此我们需要两个顶点着色器和片段。

 light_cube.vs

一个标准的三矩阵确定位置

#version 330 core
layout (location = 0) in vec3 aPos;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
	gl_Position = projection * view * model * vec4(aPos, 1.0);
}

ligtht_cube.fs

光源的片段着色器,默认都是白色

#version 330 core
out vec4 FragColor;

void main()
{
    FragColor = vec4(1.0); // set all 4 vector values to 1.0
}

cube.vs

被照射的物体,也是标准的三矩阵确定位置

#version 330 core
layout (location = 0) in vec3 aPos;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);
}

 cube.fs

我们看到的物体颜色=光的颜色*物体本身的颜色

#version 330 core
out vec4 FragColor;

uniform vec3 objectColor;
uniform vec3 lightColor;

void main()
{
    FragColor = vec4(lightColor * objectColor, 1.0);
}

main.cpp

#include <glad/glad.h>
#include <GLFW/glfw3.h>

#include <iostream>
#include "stb_image.h"
#include <cmath>
#include "shader.h"
#include "camera.h"

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow* window);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);

// settings
const unsigned int SCR_WIDTH = 1800;
const unsigned int SCR_HEIGHT = 1200;


//camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = SCR_WIDTH / 2.0f;
float lastY = SCR_HEIGHT / 2.0f;
bool firstMouse = true;

//timing
float deltaTime = 0.0f;//不同配置绘制速度不同,所以需要这个属性
float lastFrame = 0.0f;

//lighting
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);

int main() {
	//glfw:initialize and configure
	//=============================
	glfwInit();
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
	glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif

	//glfw window creation
	//=============================
	GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "Learn", NULL, NULL);
	if (window == NULL) {
		std::cout << "Failed to create GLFW window" << std::endl;
		glfwTerminate();
		return -1;
	}

	glfwMakeContextCurrent(window);
	glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
	glfwSetCursorPosCallback(window, mouse_callback);
	glfwSetScrollCallback(window, scroll_callback);

	//tell GLFW to capture our mouse
	glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

	//glad::load all OPenGL function pointers
	//=============================
	if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {
		std::cout << "Failed to initialize GLAD" << std::endl;
		return -1;
	}

	//configure gloabl opengl state
	//=============================
	glEnable(GL_DEPTH_TEST);

	//build and compile our shader zprogram
	//=============================
	Shader lightingShader("./cube.vs", "./cube.fs");
    Shader lightingCubeShader("./light_cube.vs", "./light_cube.fs");
	//set up vertex data 

    float vertices[] = {
        -0.5f, -0.5f, -0.5f,
         0.5f, -0.5f, -0.5f,
         0.5f,  0.5f, -0.5f,
         0.5f,  0.5f, -0.5f,
        -0.5f,  0.5f, -0.5f,
        -0.5f, -0.5f, -0.5f,

        -0.5f, -0.5f,  0.5f,
         0.5f, -0.5f,  0.5f,
         0.5f,  0.5f,  0.5f,
         0.5f,  0.5f,  0.5f,
        -0.5f,  0.5f,  0.5f,
        -0.5f, -0.5f,  0.5f,

        -0.5f,  0.5f,  0.5f,
        -0.5f,  0.5f, -0.5f,
        -0.5f, -0.5f, -0.5f,
        -0.5f, -0.5f, -0.5f,
        -0.5f, -0.5f,  0.5f,
        -0.5f,  0.5f,  0.5f,

         0.5f,  0.5f,  0.5f,
         0.5f,  0.5f, -0.5f,
         0.5f, -0.5f, -0.5f,
         0.5f, -0.5f, -0.5f,
         0.5f, -0.5f,  0.5f,
         0.5f,  0.5f,  0.5f,

        -0.5f, -0.5f, -0.5f,
         0.5f, -0.5f, -0.5f,
         0.5f, -0.5f,  0.5f,
         0.5f, -0.5f,  0.5f,
        -0.5f, -0.5f,  0.5f,
        -0.5f, -0.5f, -0.5f,

        -0.5f,  0.5f, -0.5f,
         0.5f,  0.5f, -0.5f,
         0.5f,  0.5f,  0.5f,
         0.5f,  0.5f,  0.5f,
        -0.5f,  0.5f,  0.5f,
        -0.5f,  0.5f, -0.5f,
    };

    //第一个
    unsigned int VBO, cubeVAO;
    glGenVertexArrays(1, &cubeVAO);
    glGenBuffers(1, &VBO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

    glBindVertexArray(cubeVAO);

    //position attribute
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);
    
    //第二个
    unsigned int lightCubeVAO;
    glGenVertexArrays(1, &lightCubeVAO);
    glBindVertexArray(lightCubeVAO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);

    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);


    //reader loop
    while (!glfwWindowShouldClose(window)) {
        //per-frame time logic
        float currentFrame = static_cast<float>(glfwGetTime());
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        //input
        processInput(window);

        //render
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
            
        //
        lightingShader.use();
        lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);
        lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);

        // view/projection transformations
        glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
        glm::mat4 view = camera.GetViewMatrix();
        lightingShader.setMat4("projection", projection);
        lightingShader.setMat4("view", view);

        // world transformation
        glm::mat4 model = glm::mat4(1.0f);
        lightingShader.setMat4("model", model);

        //render the cube
        glBindVertexArray(cubeVAO);
        glDrawArrays(GL_TRIANGLES, 0, 36);


        //
        lightingCubeShader.use();
        lightingCubeShader.setMat4("projection", projection);
        lightingCubeShader.setMat4("view", view);
        model = glm::mat4(1.0f);
        model = glm::translate(model, lightPos);
        model = glm::scale(model, glm::vec3(0.2f));
        lightingCubeShader.setMat4("model", model);

        glBindVertexArray(lightCubeVAO);
        glDrawArrays(GL_TRIANGLES, 0, 36);


        glfwSwapBuffers(window);
        glfwPollEvents();

    }

    glDeleteVertexArrays(1, &cubeVAO);
    glDeleteVertexArrays(1, &lightCubeVAO);
    glDeleteBuffers(1, &VBO);

    glfwTerminate();
    return 0;

}
void processInput(GLFWwindow* window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);

    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        camera.ProcessKeyboard(FORWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        camera.ProcessKeyboard(LEFT, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        camera.ProcessKeyboard(RIGHT, deltaTime);
}

void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and 
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}
// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{
    float xpos = static_cast<float>(xposIn);
    float ypos = static_cast<float>(yposIn);

    if (firstMouse)
    {
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }

    float xoffset = xpos - lastX;
    float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

    lastX = xpos;
    lastY = ypos;

    camera.ProcessMouseMovement(xoffset, yoffset);
}

// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    camera.ProcessMouseScroll(static_cast<float>(yoffset));
}

颜色 - LearnOpenGL CN (learnopengl-cn.github.io)

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/141187.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

京东商品详情API接口使用方法以及示例代码,可高并发请求

京东商品详情API接口是一种用于获取京东商品详细信息的接口。通过该接口&#xff0c;开发人员可以获取到商品的ID、名称、价格、销量、评价等信息&#xff0c;从而进行进一步的数据分析和应用开发。本文将介绍京东商品详情API接口的使用方法、注意事项以及示例代码。 一、使用…

Python语言的十大特性。

文章目录 前言一、Python二、Python 编程语言的特性三、开源四、Python 中的 GUI 编程支持五、Python 支持高级语言六、可扩展性七、可移植性八、大型标准库九、解释性语言十、面向对象程序设计语言十一、表达力十二、常见问题总结Python技术资源分享1、Python所有方向的学习路…

第四章mlp

生成数据集 读取数据集 data.TensorDataset(*data_arrays)mlp训练 loss nn.CrossEntropyLoss(reductionnone)我要掌握所有人脖颈上的绳 权重衰减 简单概述就是在标准意义的loss函数&#xff08;label值和计算值的差别&#xff09;中再加上一个 惩罚项&#xff0c;为什么要…

A2Attention模型介绍

A2Attention的核心思想是首先将整个空间的关键特征收集到一个紧凑的集合中&#xff0c;然后自适应地将其分布到每个位置&#xff0c;这样后续的卷积层即使没有很大的接收域也可以感知整个空间的特征。第一级的注意力集中操作有选择地从整个空间中收集关键特征&#xff0c;而第二…

Rocky DEM 高尔顿板 小球掉落正态分布模拟

Rocky DEM 高尔顿板 小球掉落正态分布模拟 前言一、外部三维模型的建立二、导入到Rocky中并设置1.导入外部三维模型2.打开3D视图3.添加颗粒入口界面4.添加颗粒并设置属性5.设置颗粒与墙壁的碰撞属性6.设置颗粒入口流量7.求解 三、动画序列设置并导出 前言 刚开始学习离散元软件…

MyBatis 反射工具箱:带你领略不一样的反射设计思路

反射是 Java 世界中非常强大、非常灵活的一种机制。在面向对象的 Java 语言中&#xff0c;我们只能按照 public、private 等关键字的规范去访问一个 Java 对象的属性和方法&#xff0c;但反射机制可以让我们在运行时拿到任何 Java 对象的属性或方法。 有人说反射打破了类的封装…

[IJKPLAYER]基于DEMO分析IJKPLAYER(整理版本)

背景 博主主要是从事C语言开发&#xff0c;因此本文着重强调FFMPEG部分&#xff0c;关于JAVA应用和框架层只是一笔带过。IJKPLAYER的实质是对FFMPEG项目中的ffplayer程序进行的二次封装&#xff0c;通过JNI方式完成对外提供JAVA接口。 1.目录结构 activities:包含了demo的所有…

【设计原则篇】聊聊开闭原则

开闭原则 其实就是对修改关闭&#xff0c;对拓展开放。 是什么 OCP&#xff08;Open/Closed Principle&#xff09;- 开闭原则。关于开发封闭原则&#xff0c;其核心的思想是&#xff1a;模块是可扩展的&#xff0c;而不可修改的。也就是说&#xff0c;对扩展是开放的&#xf…

单电源供电的运放如何增加直流偏置

在一些单电源供电的运放电路中&#xff0c;输入信号可能是交流信号&#xff0c;有正也有负&#xff0c;如果输入信号直接接到运算放大电路&#xff0c;则运放不会输出负电压&#xff0c;只有正电压&#xff0c;从而不能实现信号的调理&#xff1b; 这时我们就需要给运放添加直流…

css选择器

目录 1.什么是css? 2.选择器分类 2.1类选择器 2.3id选择器 2.3通配符选择器 3.字体样式 3.1字体大小 3.2字体粗细 3.3字体系列 3.4font属性连写 3.5样式的层叠问题 4.文本样式 4.1文本缩进 4.2文本水平对齐方式 4.3文本修饰 5.行高 6.垂直居中 7.margin:0 au…

【JAVA】去掉 if...else 的七种绝佳之法...

文章目录 前言方法一&#xff1a;提前 return方法二&#xff1a;枚举方案三&#xff1a;Optional 判空方案四&#xff1a;表驱动法方案五&#xff1a;策略模式 工厂方法方案六&#xff1a;责任链模式方案七&#xff1a;Function总结 前言 我相信小伙伴一定看过多篇怎么去掉 i…

Libhybris之线程局部存储TLS实例(五)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

Redis应用之二分布式锁

一、前言 前一篇 Redis应用之一自增编号 我们主要介绍了使用INCR命令来生成不重复的编号&#xff0c;今天我们来了解Redis另外一个命令SET NX的用途&#xff0c;对于单体应用我们可以简单使用像synchronized这样的关键字来给代码块加锁&#xff0c;但对于分布式应用要实现锁机…

select在标准输出和套接字上进行监控

selectServerInTCPIPbook.c的内容如下&#xff1a; #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <arpa/inet.h> #include <sys/socket.h> #include <sys/time.h> #include <sys/…

kubernetes--Pod进阶

目录 一、资源限制&#xff1a; 1. 资源限制的两种规范&#xff1a; 2. Pod 和 容器 的资源请求和限制&#xff1a; 3. CPU 资源单位&#xff1a; 4. 内存资源单位 &#xff1a; 5. 资源限制示例&#xff1a; 二、健康检查&#xff1a;探针&#xff08;Probe&#xff09; 1. 探…

5. HTML常用标签

5.1 标签语义 学习标签是有技巧的&#xff0c;重点是记住每个标签的语义。简单理解就是指标签的含义。即这个标签是用来干嘛的。 根据标签的语义&#xff0c;在合适的地方给一个最为合理的标签。可以让页面结构给清晰。 5.2 标题标签 <h1>-<h6>(重要) HTML提供了…

【cfeng-work】架构演进和漫谈

架构漫谈和入门 内容管理 intro分层架构MVC模式分层架构大数据时代的复杂架构 前端架构后端架构运维端架构持续演进变化 本文主要是自己接触架构的一些输出漫谈 cfeng 在work中某次负责了后端一个服务的上线&#xff0c;多个模块一起上&#xff0c;结果上线失败&#xff0c;幸运…

Mysql 和 Redis 数据如何保持一致

先阐明一下Mysql和Redis的关系&#xff1a;Mysql是数据库&#xff0c;用来持久化数据&#xff0c;一定程度上保证数据的可靠性&#xff1b;Redis是用来当缓存&#xff0c;用来提升数据访问的性能。 关于如何保证Mysql和Redis中的数据一致&#xff08;即缓存一致性问题&#xf…

Python实现WOA智能鲸鱼优化算法优化卷积神经网络回归模型(CNN回归算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提…

适用于WPF的设计模式

适用于WPF的设计模式 讨论“XAML能不能写逻辑代码”这个问题。我发现这是个有歧义的问题。这个问题可以有两种意思&#xff1a; XAML能不能用来写逻辑代码&#xff1f; XAML文件里能不能包含逻辑代码&#xff1f; 对于第一种意思——XAML是一种声明性语言&#xff0c;就是用来…