【机器学习】K近邻算法:原理、实例应用(红酒分类预测)

案例简介:有178个红酒样本,每一款红酒含有13项特征参数,如镁、脯氨酸含量,红酒根据这些特征参数被分成3类。要求是任意输入一组红酒的特征参数,模型需预测出该红酒属于哪一类。


1. K近邻算法介绍

1.1 算法原理

       原理:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,那么该样本也属于这个类别。简单来说就是,求两点之间的距离,看距离谁是最近的,以此来区分我们要预测的这个数据是属于哪个分类。

       我们看图来理解一下。蓝色点是属于a类型的样本点,粉色点是属于b类型的样本点。此时新来了一个点(黄色点),怎么判断是属于它是a类型还是b类型呢。

        方法是:新点找距离自身最近的k个点(k可变)。分别计算新点到其他各个点的距离,按距离从小到大排序,找出距离自身最近的k个点。统计在这k个点中,有多少点属于a类,有多少点属于b类。在这k个点中,如果属于b类的点更多,那么这个新点也属于b分类。距离计算公式也是我们熟悉的勾股定理。 

 

1.2 算法优缺点

算法优点:简单易理解、无需估计参数、无需训练。适用于几千-几万的数据量。

算法缺点:对测试样本计算时的计算量大,内存开销大,k值要不断地调整来达到最优效果。k值取太小容易受到异常点的影响,k值取太多产生过拟合,影响准确性。


2. 红酒数据集

2.1 数据集获取方式

       红酒数据集是Scikit-learn库中自带的数据集,我们只需要直接调用它,然后打乱它的顺序来进行我们自己的分类预测。首先我们导入Scikit-learn库,如果大家使用的是anaconda的话,这个库中的数据集都是提前安装好了的,我们只需要调用它即可。

找不到这个数据集的,我把红酒数据集连接放在文末了,有需要的自取。

Scikit-learn数据集获取方法:

(1)用于获取小规模数据集,数据集已在系统中安装好了的

sklearn.datasets.load_数据名()  
from sklearn import datasets
#系统中已有的波士顿房价数据集
boston = datasets.load_boston()  

(2)远程获取大规模数据集安装到本地,data_home默认是位置是/scikit_learn_data/

sklearn.datasets.fetch_数据名(data_home = 数据集下载目录)  
# 20年的新闻数据下载到
datasets.fetch_20newsgroups(data_home = './newsgroups.csv') #指定文件位置

这两种方法返回的数据是 .Bunch类型,它有如下属性:

data:特征数据二维数组;相当于x变量
target:标签数组;相当于y变量
DESCR:数据描述
feature_names:特征名。新闻数据、手写数据、回归数据没有
target_name:标签名。回归数据没有

想知道还能获取哪些数据集的同学,可去下面这个网址查看具体操作:

https://sklearn.apachecn.org/#/docs/master/47


2.2 获取红酒数据

       首先导入sklearn的本地数据集库,变量wine获取红酒数据,由于wine接收的返回值是.Bunch类型的数据,因此我用win_data接收所有特征值数据,它是178行13列的数组,每一列代表一种特征win_target用来接收所有的目标值,本数据集中的目标值为0、1、2三类红酒。如果大家想更仔细的观察这个数据集,可以通过wine.DESCR来看这个数据集的具体描述

        然后把我们需要的数据转换成DataFrame类型的数据。为了使预测更具有一般性,我们把这个数据集打乱。操作如下:

from sklearn import datasets
wine = datasets.load_wine()  # 获取葡萄酒数据
wine_data = wine.data  #获取葡萄酒的索引data数据,17813列
wine_target = wine.target  #获取分类目标值
 
# 将数据转换成DataFrame类型
wine_data = pd.DataFrame(data = wine_data)
wine_target = pd.DataFrame(data = wine_target)
 
# 将wine_target插入到第一列,并给这一列的列索引取名为'class'
wine_data.insert(0,'class',wine_target)
 
# ==1== 变量.sample(frac=1)           表示洗牌,重新排序
# ==2== 变量.reset_index(drop=True)   使index从0开始排序
 
wine = wine_data.sample(frac=1).reset_index(drop=True)  #把DataFrame的行顺序打乱

 

      我们取出最后10行数据用作后续的验证预测结果是否正确,这10组数据分出特征值(相当于x)和目标值(相当于y)。剩下的数据也分出特征值features和目标值targets,用于模型训练。剩下的数据中还要划分出训练集和测试集,下面再详述。到此,数据处理这块完成。

#取后10行,用作最后的预测结果检验。并且让index从0开始,也可以不写.reset_index(drop=True)
wine_predict = wine[-10:].reset_index(drop=True)  
# 让特征值等于去除'class'后的数据
wine_predict_feature = wine_predict.drop('class',axis=1)
# 让目标值等于'class'这一列
wine_predict_target = wine_predict['class']
 
wine = wine[:-10]  #去除后10行
features = wine.drop(columns=['class'],axis=1)  #删除class这一列,产生返回值
targets = wine['class']  #class这一列就是目标值


3. 红酒分类预测

3.1 划分测试集和训练集

一般采用75%的数据用于训练,25%用于测试,因此在数据进行预测之前,先要对数据划分。

划分方式:

使用sklearn.model_selection.train_test_split 模块进行数据分割。

x_train,x_test,y_train,y_test = train_test_split(x, y, test_size=数据占比)

train_test_split() 括号内的参数:
x:数据集特征值(features)
y:数据集目标值(targets)
test_size: 测试数据占比,用小数表示,如0.25表示,75%训练train,25%测试test。

train_test_split() 的返回值:
x_train:训练部分特征值
x_test:    测试部分特征值
y_train:训练部分目标值
y_test:    测试部分目标值

# 划分测试集和训练集
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(features,targets,test_size=0.25)


3.2 数据标准化

       由于不同数据的单位不同,数据间的跨度较大,对结果影响较大,因此需要进行数据缩放,例如归一化和标准化。考虑到归一化的缺点:如果异常值较多,最大值和最小值间的差值较大,会造成很大影响。我采用数据标准化的方法,采用方差标准差,使标准化后的数据均值为0,标准差为1,使数据满足标准正态分布。

# 先标准化再预测
from sklearn.preprocessing import StandardScaler  #导入标准化缩放方法
scaler = StandardScaler()  #变量scaler接收标准化方法
# 传入特征值进行标准化
# 对训练的特征值标准化
x_train = scaler.fit_transform(x_train) 
# 对测试的特征值标准化
x_test = scaler.fit_transform(x_test)   
# 对验证结果的特征值标准化
wine_predict_feature = scaler.fit_transform(wine_predict_feature) 


 3.3 K近邻预测分类

使用sklearn实现k近邻算法
from sklearn.neighbors import KNeighborsClassifier 
KNeighborsClassifier(n_neighbors = 邻居数,algorithm = '计算最近邻居算法')
.fit(x_train,y_train)

KNeighborsClassifier() 括号内的参数:

n_neighbors:int类型,默认是5,可以自己更改。(找出离自身最近的k个点)

algorithm:用于计算最近邻居的算法。有:'ball_tree'、'kd_tree'、'auto'。默认是'auto',根据传递给fit()方法的值来决定最合适的算法,自动选择前两个方法中的一个。

from sklearn.neighbors import KNeighborsClassifier  #导入k近邻算法库
# k近邻函数
knn = KNeighborsClassifier(n_neighbors=5,algorithm='auto')
# 把训练的特征值和训练的目标值传进去
knn.fit(x_train,y_train)

        将训练所需的特征值和目标值传入.fit()方法之后,即可开始预测。首先利用.score()评分法输入用于测试的特征值和目标值,来看一下这个模型的准确率是多少,是否是满足要求,再使用.predict()方法预测所需要的目标值。

评分法:根据x_test预测结果,把结果和真实的y_test比较,计算准确率

.score(x_test, y_test)

预测方法:

.predict(用于预测的特征值)
# 评分法计算准确率
accuracy = knn.score(x_test,y_test)
# 预测,输入预测用的x值
result = knn.predict(wine_predict_feature)

       accuracy存放准确率,result存放预测结果,最终准确率为0.952,最终的分类结果和wine_predict_target存放的实际分类结果有微小偏差。


完整代码如下:
import pandas as pd
from sklearn import datasets
 
wine = datasets.load_wine()  # 获取葡萄酒数据
wine_data = wine.data  #获取葡萄酒的索引data数据,17813列
wine_target = wine.target  #获取分类目标值
 
wine_data = pd.DataFrame(data = wine_data)  #转换成DataFrame类型数据
wine_target = pd.DataFrame(data = wine_target)
# 将target插入到第一列
wine_data.insert(0,'class',wine_target)
 
# ==1== 变量.sample(frac=1)           表示洗牌,重新排序
# ==2== 变量.reset_index(drop=True)   使index从0开始排序,可以省略这一步
wine = wine_data.sample(frac=1).reset_index(drop=True)
 
# 拿10行出来作验证
wine_predict = wine[-10:].reset_index(drop=True)
wine_predict_feature = wine_predict.drop('class',axis=1)  #用于验证的特征值,输入到predict()函数中
wine_predict_target = wine_predict['class']  #目标值,用于和最终预测结果比较
 
wine = wine[:-10]  #删除后10行
features = wine.drop(columns=['class'],axis=1)  #删除class这一列,产生返回值,这个是特征值
targets = wine['class']  #class这一列就是目标值
# 相当于13个特征值对应1个目标
 
 
# 划分测试集和训练集
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(features,targets,test_size=0.25)
 
# 先标准化再预测
from sklearn.preprocessing import StandardScaler  #导入标准化缩放方法
scaler = StandardScaler()  #变量scaler接收标准化方法
 
# 传入特征值进行标准化
x_train = scaler.fit_transform(x_train)  #对训练的特征值标准化
x_test = scaler.fit_transform(x_test)    #对测试的特征值标准化
wine_predict_feature = scaler.fit_transform(wine_predict_feature)
 
# 使用K近邻算法分类
from sklearn.neighbors import KNeighborsClassifier  #导入k近邻算法库
# k近邻函数
knn = KNeighborsClassifier(n_neighbors=5,algorithm='auto')
 
# 训练,把训练的特征值和训练的目标值传进去
knn.fit(x_train,y_train)
# 检测模型正确率--传入测试的特征值和目标值
# 评分法,根据x_test预测结果,把结果和真实的y_test比较,计算准确率
accuracy = knn.score(x_test,y_test)
# 预测,输入预测用的x值
result = knn.predict(wine_predict_feature)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/140801.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据结构(超详细讲解!!)第二十三节 树型结构

1.定义 树型结构是一类重要的非线性数据结构,是以分支关系定义的层次结构。是一种一对多的逻辑关系。 树型结构是结点之间有分支,并且具有层次关系的结构,它非常类似于自然界中的树。树结构在客观世界中是大量存在的,例如家谱、…

【数据结构】树与二叉树(十四):二叉树的基础操作:查找给定结点的父亲(算法Father )

文章目录 5.2.1 二叉树二叉树性质引理5.1:二叉树中层数为i的结点至多有 2 i 2^i 2i个,其中 i ≥ 0 i \geq 0 i≥0。引理5.2:高度为k的二叉树中至多有 2 k 1 − 1 2^{k1}-1 2k1−1个结点,其中 k ≥ 0 k \geq 0 k≥0。引理5.3&…

基于头脑风暴算法优化概率神经网络PNN的分类预测 - 附代码

基于头脑风暴算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于头脑风暴算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于头脑风暴优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

基于RK3399的室内健身魔镜方案

I 方案背景 一、健身魔镜的兴起 2020年疫情席卷全球,宅家是防疫的措施之一,因而宅家运动火爆,随之而来的宅家运动器材也风靡起来,其中包含既有颜值又具有多种功能的健身魔镜。 Ⅱ 方案介绍 一、健身魔镜的方案介绍 …

020线上线下融合商业模式 新零售系统定制开发

020线上线下融合商业模式将传统的线下实体店和线上电子商务相结合,通过双通道销售、互联网服务等方式,实现线上线下渠道的整合与协同发展。这种商业模式的核心在于通过整合线上线下资源,提供更优质的产品和服务,增强消费者体验和提…

查看包是由哪个依赖引入的

问题:在Maven项目中,如何查看某个包是由pom.xml文件的哪个依赖引入的? 示例: mvn dependency:tree -Dverbose -Dincludesjakarta.validation:jakarta.validation-api或者: mvn dependency:tree -Dincludesvelocity:…

微服务概览

单体架构 传统的软件应用为单体架构。尽管也是模块化逻辑,但是最终还是会打包并并部署为单体应用。最主要的原因是太复杂。并且应用扩展性低,可靠性也低。敏捷开发和部署变得无法完成。 治理办法:化繁为简,分而治之。 微服务起源…

基于回溯搜索算法优化概率神经网络PNN的分类预测 - 附代码

基于回溯搜索算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于回溯搜索算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于回溯搜索优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

【Python小程序】浮点矩阵加减法

一、内容简介 本文使用Python编写程序,实现2个m * n矩阵的加、减法。具体过程如下: 给定两个m*n矩阵A和B,返回A与B的和或差。 二、求解方法 将两个矩阵对应位置上的元素相加。 三、Python代码 import numpy as np# 用户输入两个矩阵的维…

Spring Bean 生命周期的执行流程

(mic老师面试文档摘录) 普通人的回答: Spring Bean 的生命周期,可以分为单例、多实例。呃... 不对,这个是 Spring Bean 的作用域。 生命周期,我想想.... 我记得 Bean 的生命周期会有加载、实例化、销毁…

开源供应链管理系统 多供应商批发管理系统方案及源码输出

开发框架:PHPMySQL 后端框架:ThinkPHP 订货端:PC小程序 客户订货端:小程序 多仓库OR多供应商:多供应商 是否进销存:自带进销存 整个方案含B端订货PC、小程序端、C端小程序端下单,源码&…

UI和UX设计师实用高效的设计工具大全

真正专业和优秀的UX设计师不会介意使用哪个工具。因为,只要能力足够,即使条件不同,工具不同,也可以设计出让人眼前一亮的作品。也许,这种理解本身并没有什么大问题。然而,如今,设计师显然有如此…

刨根问底:Java中的“\p{P}”到底是什么意思

问题由来: 在代码中看到了Pattern.compile("\\p{P}"),用来识别符号,但是这个正则表达式却不匹配加号,所以\p{P}到底是什么意思呢 谷歌了一下,找到StackOverflow上有人问了一模一样的问题 可是这个问题被关…

ChatGLM3本地部署运行(入门体验级)

文章目录 前言零 硬件小白基知填坑eForce Game Ready驱动程序CUDA常用命令 环境准备NVIDIA驱动更新CUDA安装 部署补充内容体验 前言 学习自B站up主技术爬爬虾,感谢up主提供的整合包! 零 硬件 6GB以上显存的NVIDIA显卡(品质越高&#xff0c…

基于猫群算法优化概率神经网络PNN的分类预测 - 附代码

基于猫群算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于猫群算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于猫群优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络的光滑…

Redhat7查看时区、修改时区

问题: 安装好redhat7之后,发现时间和物理机上面的网络时间不一致,于是查看本着修改时间的目的,却发现原来是时区的问题。 解决步骤: 查看时区状态信息 timedatectl修改时区到亚洲/上海 timedatectl set-timezone A…

Lasso回归和岭回归详解

当数据特征存在多重共线性,特征矩阵不满秩,或者用普通线性回归过拟合的状况时,我们需要用lasso回归或岭回归来构建模型。 左边是lasso回归,右边是岭回归。 Lasso使用的是系数 的L1范式(L1范式则是系数 的绝对值&#…

会展服务预约小程序的作用如何

不少场景都会有会展服务需求,比如婚宴、年会、展会等,往往需要租订场地,不同地域不同时间地点等,尤其大城市需求频次较高。 但在实际经营中,会员服务企业面临着一些难题。对多数企业来讲,线上是不可或缺的…

在 uniapp 中 一键转换单位 (px 转 rpx)

在 uniapp 中 一键转换单位 px 转 rpx Uni-app 官方转换位置利用【px2rpx】插件Ctrl S一键全部转换下载插件修改插件 Uni-app 官方转换位置 首先在App.vue中输入这个: uni.getSystemInfo({success(res) {console.log("屏幕宽度", res.screenWidth) //屏…

【Linux】你是否还在为安装虚拟机而烦恼?这篇博客将告诉你如何快速搭建Linux环境

👦个人主页:Weraphael ✍🏻作者简介:目前正在学习c和算法 ✈️专栏:Linux 🐋 希望大家多多支持,咱一起进步!😁 如果文章有啥瑕疵,希望大佬指点一二 如果文章对…