Android Rxjava架构原理与使用的详解解答

简单介绍

Rxjava这个名字,其中java代表java语言,而Rx是什么意思呢?Rx是Reactive Extensions的简写,翻译过来就是,响应式拓展。所以Rxjava的名字的含义就是,对java语言的拓展,让其可以实现对数据的响应式编程。

原理

Rx是Reactive Extensions的缩写的简写,可以使用可观察数据流对编程接口进行异步编程,它结合了观察者模式,迭代器模式和函数式的精华。

Rxjava是一种异步数据处理库,也是一种观察者模式。最早是Netflix公司用于重构当前架构时减少REST调用的次数,参考了Microsoft公司的响应式编程,把Microsoft的Rx库迁移到Java JVM中,其中最有名的就是RxJava。

它的特点主要有以下:

  • 支持Java 8 Lambda。
  • 支持异步和同步。
  • 单一依赖关系。
  • 简洁,优雅。

RxAndroid

在开发项目的时候,开发者在使用Rxjava时会搭配RxAndroid,他是针对Rxjava在Android平台使用的一个响应式扩展组件。使用RxAndroid的Schedulers(调度器)可以解决Android主线程问题, 多线程等问题。

操作符

其实RxJava中最重要的操作符,它可以在订阅的过程中进行各种转化,下面以Map操作符为例子来进行说明,Map操作符本身就是一个映射的关系

        mText.append("\n 输入参数: 1,2,3,4,5,6 \n");
        Observable.from(number)           //之前提到的创建Observable方法
                  .map(new Func1<Integer, Boolean>() {
                      @Override
                      public Boolean call(Integer integer) {
                          mText.append("\n\n map()  Integer--->Boolean");
                          return (integer<3);
                      }
                  })
                  .subscribe(new Action1<Boolean>() {
                    @Override
                    public void call(Boolean aBoolean) {
                        mText.append("\n观察到输出结果:\n");
                        mText.append(aBoolean.toString());
 
                    }
                });

这里的Map进行了类型的转换,将int转变成嗯boolean类型的

操作符原理

  • (1)首先创建一个代理的观察者
  • (2)让外部的Obervable去订阅这个代理的观察者
  • (3)外部的观察者发送onNext等事件,都会先传递到代理观察者这里
  • (4)在代理观察者的onNext中调用自己创建的Fun1的call方法,进行数据的转化
  • (5)当我们在调用obervable的call方法的时候会将真实的观察者传递进来
  • (6)调用真实观察者的onNext方法将结果传递出去就可以了

线程调度操作符

这个是异步的关键,用来在主线程和子线程之间进行切换

        Observable.create(new Observable.OnSubscribe<Drawable>(){
 
            @Override
            public void call(Subscriber<? super Drawable> subscriber) {
                sb.append(" Observable.create(): 线程: "+Thread.currentThread().getName()+"\n\n");
                Drawable dd=getResources().getDrawable(R.mipmap.gril);
                subscriber.onNext(dd);
                subscriber.onCompleted();
            }
        }).subscribeOn(Schedulers.io())
          .observeOn(Schedulers.newThread())
          .map(new Func1<Drawable, ImageView>() {
              @Override
              public ImageView call(Drawable drawable) {
                  sb.append("map():  drawable -->imageview 的线程: "+Thread.currentThread().getName()+"\n\n");
                  ImageView img=new ImageView(RxSchuderActivity.this);
                  LinearLayout.LayoutParams params= new LinearLayout.LayoutParams(LinearLayout.LayoutParams.WRAP_CONTENT, LinearLayout.LayoutParams.WRAP_CONTENT);
                  img.setLayoutParams(params);
                  img.setImageDrawable(drawable);
                  return img;
              }
          }).observeOn(AndroidSchedulers.mainThread())
            .subscribe(new Action1<ImageView>() {
                @Override
                public void call(ImageView imageView) {
                    sb.append("call(): 线程: "+Thread.currentThread().getName()+"\n");
                    mText.setText(sb);
                    mLinearlayout.addView(imageView);
 
                }
            });

实际上线程调度只有subscribeOn()和observeOn()两个方法。对于初学者,只需要掌握两点:

subscribeOn()它指示Observable在一个指定的调度器上创建(只作用于被观察者创建阶段)。只能指定一次,如果指定多次则以第一次为准

observeOn()指定在事件传递(加工变换)和最终被处理(观察者)的发生在哪一个调度器。可指定多次,每次指定完都在下一步生效。

线程调度掌握到这个程度,在入门阶段时绝对够用的了。

Rxjava基本使用

上面这段代码是对Rxjava简单的使用,其中

  • Single 发出单个数据的被观察者Observable,只发送一次,只有Success和Error两种状态,没有next,在Rxjava2中新增
  • just 被观察者生产的数据,参数类型是一个泛型,这里传进去的是一个String
  • subscribe 观察者Observer,这里声明的是SingleObserver,用来对Single中产生的数据进行响应
  • SingleObserver
  • onSubscribe 订阅成功后就会回调,一般会在此方法中进行一些初始化操作。其参数类型是Disposable,可以通过调用d.dispose() 取消对Observable的监听,并让其停止发送消息。
  • onSuccess 接收数据成功后就会回调,只会回调一次,其参数类型和Observable中just方法传入的数据类型一致,这里是String类型
  • onError 发生错误时回调,参数是Throwable,包含错误信息。

运行效果

2022-12-18 13:54:12.450 29223-29223/com.hfhuaizhi.rxjavatest E/hftest: onSubscribe 
2022-12-18 13:54:12.451 29223-29223/com.hfhuaizhi.rxjavatest E/hftest: onSuccess:hfhuaizhi

可以看到首先onSubscribe被调用,表明注册了观察者。然后接收数据成功,打印出’hfhuaizhi’。 到这里我们就了解了Rxjava最基本的用法,接下来分析一下函数的内部做了什么。有关Android的架构技术进阶可以参考《Android核心技术笔记》点击就可以查看到详细的板块了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/140289.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从头开始的卷积神经网络

VGG-16 卷积神经网络。来源&#xff1a;LearnOpenCV 参考资料&#xff1a;这篇文章可以在 Kaggle Notebook &#x1f9e0; Convolutional Neural Network From Scratch上更好地阅读。路易斯费尔南多托雷斯 一、说明 本文详细介绍在tf2.0上&#xff0c;使用ceras实现基本的神经…

「NLP+网安」相关顶级会议期刊 投稿注意事项+会议等级+DDL+提交格式

「NLP网安」相关顶级会议&期刊投稿注意事项 写在最前面一、会议ACL (The Annual Meeting of the Association for Computational Linguistics)IH&MMSec (The ACM Workshop on Information Hiding, Multimedia and Security)CCS (The ACM Conference on Computer and Co…

16 _ 二分查找(下):如何快速定位IP对应的省份地址?

通过IP地址来查找IP归属地的功能,不知道你有没有用过?没用过也没关系,你现在可以打开百度,在搜索框里随便输一个IP地址,就会看到它的归属地。 这个功能并不复杂,它是通过维护一个很大的IP地址库来实现的。地址库中包括IP地址范围和归属地的对应关系。 当我们想要查询202…

Golang源码分析 | 程序引导过程

环境说明 CentOS Linux release 7.2 (Final&#xff09; go version go1.16.3 linux/amd64 GNU gdb (GDB) Red Hat Enterprise Linux 7.6.1-80.el7使用gdb查看程序入口 编写一个简单的go程序 // main.go package mainfunc main() {print("Hello world") } 编译go …

Python大神用的贼溜的九个技巧,超级实用~

文章目录 一、整理字符串输入二、迭代器&#xff08;切片&#xff09;三、跳过可对对象的开头四、只包含关键字参数的函数 (kwargs)五、创建支持「with」语句的对象六、用「slots」节省内存七、限制「CPU」和内存使用量八、控制可以/不可以导入什么九、实现比较运算符的简单方法…

js获取当前日期与7天后的日期

调用 console.log(this.getSectionData(7))结果 函数 getSectionData(section) {const now new Date()const nowYear now.getFullYear()const nowMonth now.getMonth() 1 < 10 ? (0 (now.getMonth() 1)) : (now.getMonth() 1)const nowDay now.getDate() < 1…

Git 分支设计规范

开篇 这篇文章分享 Git 分支设计规范&#xff0c;目的是提供给研发人员做参考。 规范是死的&#xff0c;人是活的&#xff0c;希望自己定的规范&#xff0c;不要被打脸。 在说 Git 分支规范之前&#xff0c;先说下在系统开发过程中常用的环境。 DEV 环境&#xff1a;用于开发…

高可用架构设计

1. 引言 软件系统有三个追求&#xff1a;高性能、高并发、高可用&#xff0c;俗称三高。三者既有区别也有联系&#xff0c;门门道道很多&#xff0c;本篇讨论高可用 高可用技术的重要性在于保证系统的连续可用性&#xff0c;提高系统的稳定性和可靠性。它可以应对高并发和大规…

vue2按需导入Element(vite打包)

1.安装element 说明&#xff1a;-S是生产依赖。 npm install element-ui2 -S 2.安装babel-plugin-component 说明&#xff1a;-D是开发模式使用。 npm install babel-plugin-component -D 3. vite.config.js 说明&#xff1a;借助 babel-plugin-component &#xff0c;我们可…

华为的干部管理和人才管理实践精髓(深度好文,收藏)

&#xff08;本文摘自谢宁专著《华为战略管理法&#xff1a;DSTE实战体系》&#xff0c;欢迎购买&#xff09; 1997年&#xff0c;在《华为基本法》的起草过程中&#xff0c;起草小组的一位人大教授问任正非:“任总&#xff0c;人才是不是华为的核心竞争力?”任正非的回答出人…

在Spring Boot中使用进程内缓存和Cache注解

在Spring Boot中使用内缓存的时候需要预先知道什么是内缓存&#xff0c;使用内缓存的好处。 什么是内缓存 内缓存&#xff08;也称为进程内缓存或本地缓存&#xff09;是指将数据存储在应用程序的内存中&#xff0c;以便在需要时快速访问和检索数据&#xff0c;而无需每次都从…

记录--让我们来深入了解一下前端“三清”是什么

这里给大家分享我在网上总结出来的一些知识&#xff0c;希望对大家有所帮助 前端“三清” 在前端开发中&#xff0c;我们经常听到关于“三清”的说法&#xff0c;即 window、document、Object。这三者分别代表了 BOM(浏览器对象模型)、DOM(文档对象模型)以及 JS 的顶层对象。在…

C/C++轻量级并发TCP服务器框架Zinx-游戏服务器开发006:基于redis查找玩家姓名+游戏业务实现总结

文章目录 1 Redis的安装与API的使用1.1 安装目录及环境变量1.2 设置远程客户端连接和守护进程1.3 启动redis1.4 Hiredis API的使用1.5 我的动态库和头文件 2 Redis的使用2.1 初始化时候2.2 结束的时候 3 测试4 Makefile5 游戏业务总结 1 Redis的安装与API的使用 1.1 安装目录及…

为什么UI自动化难做?—— 关于Selenium UI自动化的思考

在快速迭代的产品、团队中&#xff0c;UI自动化通常是一件看似美好&#xff0c;实际“鸡肋”&#xff08;甚至绝大部分连鸡肋都算不上&#xff09;的工具。原因不外乎以下几点&#xff1a; 1 效果有限 通常只是听说过&#xff0c;就想去搞UI自动化的团队&#xff0c;心里都认…

【数据分享】2021-2023年我国主要城市逐月轨道交通运营数据

以地铁为代表的轨道交通是大城市居民的主要交通出行方式之一&#xff0c;轨道交通的建设和运营情况也是一个城市发展水平的重要体现。本次我们为大家带来的是2021-2023年我国主要城市的逐月的轨道交通运营数据&#xff01; 数据指标包括&#xff1a;运营线路条数&#xff08;条…

浅谈掌动智能验收测试主要服务内容

所谓验收测试是对软件的功能性、性能效率、兼容性、易用性、可靠性、信息安全性、维护性、可移植性进行测试&#xff0c;对产品说明、用户文档集进行审阅&#xff0c;为科研项目、信息工程项目等进行第三方验收评测&#xff0c;交付验收测试报告。本文将介绍掌动智能验收测试主…

BlendTree动画混合算法详解

【混合本质】 如果了解骨骼动画就知道&#xff0c;某一时刻角色的Pose是通过两个邻近关键帧依次对所有骨骼插值而来&#xff0c;换句话说就是由两个关键帧混合而来。 那么可不可以由多个关键帧混合而来呢&#xff1f;当然可以。 更多的关键帧可以来自不同的动画片段&#xf…

weblogic集群配置信息,IIOP问题解决,节点配置管理

第一、创建域的时候&#xff0c;管理服务器&#xff0c;受管服务器&#xff0c;选择管理服务器&#xff0c;设置端口9001&#xff0c;其他默认下一步即可。 第二、启动管理服务器&#xff0c;打开控制台&#xff0c;增加服务器&#xff0c;集群如图&#xff0c;如果这两部有问…

RT-DETR算法优化改进:Backbone改进 | HGBlock完美结合PPHGNetV2 GhostConv

💡💡💡本文独家改进: GhostConv助力RT-DETR ,HGBlock与PPHGNetV2 GhostConv完美结合 推荐指数:五星 HGBlock_GhostConv | 亲测在多个数据集能够实现涨点 RT-DETR魔术师专栏介绍: https://blog.csdn.net/m0_63774211/category_12497375.html ✨✨✨魔改创新RT-…

【FPGA】十进制计数器 | 实现 4-bit 2421 十进制计数器 | 有限状态机(FSM)

目录 Ⅰ. 实践说明 0x00 十进制计数器 0x01 有限状态机&#xff08;FSM&#xff09; Ⅱ. 实践部分 0x00 4-bit 2421 十进制计数器 Ⅰ. 实践说明 0x00 十进制计数器 十进制计数器是一种以十进制运算的计数器&#xff0c;从 0 数到 9&#xff0c;然后返回 0 状态。由于它需…