Python实现WOA智能鲸鱼优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提出的一种新的群体智能优化算法,其优点在于操作简单,调整的参数少以及跳出局部最优的能力强。

本项目通过WOA智能鲸鱼优化算法寻找最优的参数值来优化BP神经网络回归模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

  

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:  

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:    

4.探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建WOA智能鲸鱼优化算法优化BP神经网络回归模型

主要使用WOA智能鲸鱼优化算法优化BP神经网络回归算法,用于目标回归。

6.1 WOA智能鲸鱼优化算法寻找的最优参数  

最优参数:

6.2 最优参数值构建模型

编号

模型名称

参数

1

BP神经网络回归模型

units=best_units

2

epochs=best_epochs

6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失曲线图

7.模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

模型名称

指标名称

指标值

测试集

BP神经网络回归模型

  R方

0.9971

均方误差

108.7526

可解释方差值

0.9971

平均绝对误差

8.6383

从上表可以看出,R方0.9971,为模型效果较好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。  

8.结论与展望

综上所述,本文采用了WOA智能鲸鱼优化算法寻找BP神经网络回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

链接:https://pan.baidu.com/s/12c4W2khpKdDHYOJ0yL5Zag 
提取码:mt59

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/140106.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DeepFool: a simple and accurate method to fool deep neural networks

DeepFool: a simple and accurate method to fool deep neural networks----《DeepFool:一种简单而准确的欺骗深度神经网络的方法》 摘要 最先进的深度神经网络已经在许多图像分类任务上取得了令人印象深刻的结果。然而,这些相同的架构已被证明对于图像…

纯c语言模拟栈(初学必看)

1.栈的概念及其结构 栈是一种特殊的线性表,在栈这个结构里,越先存进去的数据越难取出来。 这个结构就像是一个只有一端有打开的容器,越先放进去的球越在底部,想要把底部的球拿出来,就必须先把前面的求拿出来。像这种”…

使用 ESP-IDF-SBOM 生成软件物料清单

概述 “软件物料清单” (SBOM) 已经成为软件安全和软件供应链风险管理的关键组成部分。SBOM 是与应用程序相关的所有软件组件、依赖项和元数据的详尽清单。 乐鑫认为,SBOM 信息是确保联网设备安全性的关键。因此,我们现在提供了相关工具和解决方案&…

02-瑞吉外卖员工表的增删改查

添加员工信息 执行流程 第一步: 用户点击添加员工按钮跳转到add.html页面,然后在页面中输入要添加的员工的信息 第二步: 用户点击保存按钮发送Ajax请求将用户输入的员工信息以json的格式提交到服务端 第三步: 服务端Controller接收页面提交的json格式的数据并转化为java对象…

Vue3 ref函数和active函数

一、ref函数 我们在setup函数中导出的属性和方法虽然能够在模板上展示出来,但是并没有给属性添加响应式,因此,我们需要使用ref函数来为我们的数据提供响应式。 (一)引入ref函数 import { ref } from "vue"…

Sprint Boot 学习路线 6

测试 Spring提供了一组测试工具,可以轻松地测试Spring应用程序的各个组件,包括控制器、服务、存储库和其他组件。它具有丰富的测试注释、实用程序类和其他功能,以帮助进行单元测试、集成测试等。 JPA测试 Spring JPA(Java Pers…

pytorch框架学习(tensorboard的使用)

什么是tensorboard? tensorboard是一个可视化工具,它可以把训练过程中的数据变化以图像的形式绘制出来,或者记录训练过程中使用的图片 tensorboard的安装: 在pycharm的终端中输出安装命令后自动安装—— pip install tensorbo…

加速mvn下载seatunnel相关jar包

seatunnel安装的时候,居然要使用mvnw来下载jar包,而且是从https://repo.maven.apache.org 下载,速度及其缓慢,改用自己本地的mvn下载。 修改其安装插件相关脚本,复制install-plugin.sh重命名为install-plugin-mvn.sh …

玩转硬件之Micro:bit的玩法(五)——垃圾分类

垃圾分类,为了美好的明天 垃圾是我们生活中不可避免的产物,每天都有大量的垃圾被丢弃,如果不加以处理,就会给环境和人类带来严重的危害。 垃圾分类是一种有效的垃圾管理方式,它是指按照一定的标准或规则,将…

[量子计算与量子信息] 2.1 线性代数

2.1 线性代数 符号对照表 量子力学中,向量使用 ∣ ψ ⟩ \ket \psi ∣ψ⟩ (ket)来表示,可以理解为一个列向量。其对偶向量为 ⟨ ψ ∣ \bra \psi ⟨ψ∣ ,可以理解为行向量。 向量空间中零向量直接用 0 0 0 表示, ∣ 0 ⟩ \…

网络安全黑客技术自学

前言 一、什么是网络安全 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 无论网络、Web、移动、桌面、云等哪个领域,都有攻与防…

如何利用黑群晖虚拟机和内网穿透实现公网远程访问

文章目录 前言本教程解决的问题是:按照本教程方法操作后,达到的效果是前排提醒: 1. 搭建群晖虚拟机1.1 下载黑群晖文件vmvare虚拟机安装包1.2 安装VMware虚拟机:1.3 解压黑群晖虚拟机文件1.4 虚拟机初始化1.5 没有搜索到黑群晖的解…

基于51单片机DS18B20温度检测报警系统串口设置阀值-仿真及源程序

一、系统方案 1、本设计采用51单片机作为主控器。 2、DS18B20采集温度值送到数码管显示。 3、按键报警阀值或串口设置阀值。 4、测量温度小于下限或大于上限,蜂鸣器报警。 二、硬件设计 原理图如下: 三、单片机软件设计 1、首先是系统初始化 uint z; …

八皇后问题

1.八皇后BOSS 2.战术分析 第一个皇后先放第一行第一列第二个皇后放在第二行第一列、然后判断是否OK,如果不OK,继续放在第二列、第三列、依次把所有列都放完,找到一个合适继续第三个皇后,还是第一列、第二列.…直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解当得到…

LeetCode(9)跳跃游戏【数组/字符串】【中等】

目录 1.题目2.答案3.提交结果截图 链接: 55. 跳跃游戏 1.题目 给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标,如果可以,返回…

青少年编程学习 等级考试 蓝桥杯/NOC/GESP等比赛资料合集

一、博主愚见 在当今信息技术高速发展的时代,编程已经成为了一种必备的技能。随着社会对于科技人才的需求不断增加,青少年编程学习正逐渐成为一种趋势。为了更好地帮助青少年学习编程,提升他们的技能和素质,博主结合自身多年从事青…

五款常见的自动化测试框架

在自动化的软件测试系统实现过程中使用框架设计可以使得测试脚本的维护量减至最少。然而,大量的自动化测试工具均采用传统的“录制一回放”模 型,导致了较高的脚本维护量,因为测试数据在测试脚本程序中是以硬编码方式实现的。此外&#xff0…

向量数据库的分类概况

保存和检索矢量数据的五种方法: 像 Pinecone 这样的纯矢量数据库 全文搜索数据库,例如 ElasticSearch 矢量库,如 Faiss、Annoy 和 Hnswlib 支持矢量的NoSQL 数据库,例如 MongoDB、Cosmos DB 和 Cassandra 支持矢量的SQL 数据库&am…

Web视频会议:搭建CS for WebRTC

1. 下载Centos 7, WebRTC 需要Centos7版本 本文福利, 免费领取C音视频学习资料包学习路线大纲、技术视频/代码,内容包括(音视频开发,面试题,FFmpeg ,webRTC ,rtmp ,hls ,…

垂直领域对话系统架构

垂直领域对话系统是指针对特定领域或行业的需求而构建的对话系统。这种系统通常需要具备高度的专业知识和对特定领域的知识库进行深入的学习和训练,以便能够提供准确、高效、实用的服务。 垂直领域对话系统的构建通常包括以下步骤: 确定目标领域或行业…