RGMII回环:IDDR+ODDR+差分接口

目录

  • 一、实验内容
  • 二、原理解释
  • 三、程序
    • 1、顶层文件:
    • 2、子模块
      • 2.1 oddr模块
      • 2.2、iddr顶层模块
      • 2.3、iddr子模块
    • 3、仿真
    • 4、注意
    • 5、下载工程及仿真

一、实验内容

1、通过IDDR和ODDR的方式完成RGMII协议;
2、外部接口使用OBUFDS、IBUFDS转换成差分接口;
3、数据转换及传输:顶层文件自己产生100次数,每个数都是8bit,传给oddr模块,oddr模块经过转换再传出4bit,这4bit数据再输出到外部(仿真的时候,可以接到输入,实际板测可以用跳线帽短接,也可以传给另一块板子,进行回环实验),4bit数据重新从顶层输入到iddr模块,iddr模块经过转换,输出8bit数据,输出到外部。

二、原理解释

本实验参考了部分文章,一些原理请直接看以下文章:
1、VIVADO IDDR与ODDR原语的使用
2、Xilinx 差分信号 LVDS传输实战

三、程序

1、顶层文件:

      这里面的diff定义=lvds,之所以定义成diff,是老大说这样对于IO的适用范围更大。
      顶层模块例化了一个iddr_top模块,一个PLL模块(输入50mhz系统时钟,输出125mhz高速时钟采集数据),一个oddr模块。

`timescale 1ns / 1ps
module I_ODDR_ETH_DIFF_TOP(
    //System Interfaces
    input                   sclk            ,
    input                   rst_n           ,
    
    input                   rx_clk_p          ,//IDDR IN CLK
    input                   rx_clk_n          ,//IDDR IN CLK
    input    [ 3:0]         rx_data_p         ,//IDDR IN DATA
    input    [ 3:0]         rx_data_n         ,//IDDR IN DATA
    
    output                  tx_clk_p          ,//ODDR CLK
    output                  tx_clk_n          ,//ODDR CLK
    output   [ 3:0]         tx_data_p         ,//ODDR DATA
    output   [ 3:0]         tx_data_n         ,//ODDR DATA
    
    output                  gb_out_clk_p      ,//IDDR OUT CLK 
    output                  gb_out_clk_n      ,//IDDR OUT CLK  
    output   [ 7:0]         gb_out_data_p     ,//IDDR OUT DATA 
    output   [ 7:0]         gb_out_data_n      //IDDR OUT DATA   

);

wire [3:0] rx_data;
wire [3:0] tx_data;

reg  [ 7:0]     gb_tx_data      ;
wire            phy_rst_n       ;       
wire            tx_data_ctrl    ;
reg             gb_tx_data_en   ;

reg  [ 7:0]     gb_tx_cnt       ;
wire            gb_tx_clk       ;

wire            gb_out_clk      ;
wire [7:0]      gb_out_data     ;

clk_wiz_1 clk_wiz_1_inst
 (
  // Clock out ports
  .clk_out1(gb_tx_clk),
 // Clock in ports
  .clk_in1(sclk) //iddr clk_90  default:sclk
 ); 


// diff out, 把iddr转化的数据,通过diff发送出去
// 输出50M相位90度的差分时钟
OBUFDS #(
	.IOSTANDARD		(	"DEFAULT"	), // Specify the output I/O standard
	.SLEW			(	"SLOW"		) 
)     
dclko_OBUFDS
(
	.O  (	tx_clk_p ),
	.OB (	tx_clk_n ),
	.I  (	tx_clk  ) 
);

 
  genvar ao;
    generate
        for (ao = 0; ao < 4; ao = ao+1) begin
 // 输出oddr的数据
OBUFDS #(
	.IOSTANDARD		(	"DEFAULT"	), // Specify the output I/O standard
	.SLEW			(	"SLOW"		) 
)  
dout_OBUFDS
(
	.O  (	tx_data_p[ao] 	),
	.OB (	tx_data_n[ao] 	),
	.I  (	tx_data[ao]	) 
);
       end
   endgenerate


//diff in
// 还原单端时钟
IBUFDS 
#(
	.DIFF_TERM		(	"TRUE"		),       // Differential Termination
	.IBUF_LOW_PWR	(	"TRUE"		),     // Low power="TRUE", Highest performance="FALSE" 
	.IOSTANDARD		(	"DEFAULT"	)     // Specify the input I/O standard
)
rxlki_IBUFDS
(
	.O	(	rx_clk	),   // 1-bit output: Buffer output
	.I	(	rx_clk_p	),   // 1-bit input: Diff_p buffer input (connect directly to top-level port)
	.IB	(	rx_clk_n	)  // 1-bit input: Diff_n buffer input (connect directly to top-level port)
);    
// 还原单端数据
  genvar i;
    generate
        for (i = 0; i < 4; i = i+1) begin
IBUFDS 
#(
	.DIFF_TERM		(	"TRUE"		),       // Differential Termination
	.IBUF_LOW_PWR	(	"TRUE"		),     // Low power="TRUE", Highest performance="FALSE" 
	.IOSTANDARD		(	"DEFAULT"	)     // Specify the input I/O standard
)
rxdatai_IBUFDS
(
	.O	(	rx_data[i]		),   // 1-bit output: Buffer output
	.I	(	rx_data_p[i]	),   // 1-bit input: Diff_p buffer input (connect directly to top-level port)
	.IB	(	rx_data_n[i]	)  // 1-bit input: Diff_n buffer input (connect directly to top-level port)
); 
end
endgenerate
 

//IDDR 8bit
  genvar io;
    generate
        for (io = 0; io < 8; io = io+1) begin
 // 输出oddr的数据
OBUFDS #(
	.IOSTANDARD		(	"DEFAULT"	), // Specify the output I/O standard
	.SLEW			(	"SLOW"		) 
)  
iddrout_OBUFDS
(
	.O  (	gb_out_data_p[io] 	),
	.OB (	gb_out_data_n[io] 	),
	.I  (	gb_out_data[io]	) 
);
       end
   endgenerate

OBUFDS #(
	.IOSTANDARD		(	"DEFAULT"	), // Specify the output I/O standard
	.SLEW			(	"SLOW"		) 
)     
iddrclko_OBUFDS
(
	.O  (	gb_out_clk_p ),
	.OB (	gb_out_clk_n ),
	.I  (	gb_out_clk  ) 
);
   
always@(posedge gb_tx_clk or negedge phy_rst_n)
    if(phy_rst_n == 1'b0)
       gb_tx_cnt   <=8'b0;
    else if(gb_tx_cnt == 8'd99)
       gb_tx_cnt   <=8'd0;
    else 
       gb_tx_cnt   <=gb_tx_cnt+1'b1;
              
always @(posedge gb_tx_clk or negedge rst_n)
    if(rst_n == 1'b0)begin
        gb_tx_data      <=8'd0;
        gb_tx_data_en   <=1'b0;
    end
    else if(phy_rst_n == 1'b1)begin
        gb_tx_data_en       <=1'b1;
        if (gb_tx_cnt < 8'd7)
            gb_tx_data       <=     8'h55;
        else if(gb_tx_cnt  ==  8'd7)
            gb_tx_data      <=      8'hd5;
        else 
            gb_tx_data      <=    gb_tx_cnt;
        end

    else begin
        gb_tx_data      <=8'd0;
        gb_tx_data_en   <=1'b0;
    end

              
oddr_ctrl oddr_ctrl_inst(
    //System Interfaces
    .rst_n                  (rst_n                  ),
    //Gigbit Interfaces
    .tx_data                (tx_data                ),
    .tx_data_ctrl           (tx_data_ctrl           ),
    .tx_clk                 (tx_clk                 ),
    //Communication Interfaces
    .gb_tx_data             (gb_tx_data             ),
    .gb_tx_data_en          (gb_tx_data_en          ),
    .gb_tx_data_err         (1'b0                   ),
    .gb_tx_clk              (gb_tx_clk              ) 
);

IDDR_TOP gbit_top_inat(
    //System Interfaces
    .sclk                   (sclk                   ),
    .rst_n                  (rst_n                  ),
    //Gigbit Interfaces
    .phy_rst_n              (phy_rst_n              ),
    .rx_data                (rx_data                ),
    .rx_ctrl                (tx_data_ctrl           ),
    .gb_rx_data             (gb_out_data            ),
    .rx_clk_90              (gb_out_clk             ),
    .rx_clk                 (rx_clk                 )
);

endmodule

2、子模块

2.1 oddr模块

负责将8bit转换成4bit。

`timescale 1ns / 1ps
module oddr_ctrl(
    //System Interfaces
    input                   rst_n           ,
    //Gigbit Interfaces
    output  wire    [ 3:0]  tx_data         ,
    output  wire            tx_data_ctrl    ,
    output  wire            tx_clk          ,
    //Communication Interfaces
    input           [ 7:0]  gb_tx_data      ,
    input                   gb_tx_data_en   ,
    input                   gb_tx_data_err  ,
    input                   gb_tx_clk        
);
 

ODDR #(
    .DDR_CLK_EDGE               ("SAME_EDGE"                ), // "OPPOSITE_EDGE" or "SAME_EDGE" 
    .INIT                       (1'b0                       ),    // Initial value of Q: 1'b0 or 1'b1
    .SRTYPE                     ("SYNC"                     ) // Set/Reset type: "SYNC" or "ASYNC" 
) ODDR_ctrl (
      .Q                        (tx_data_ctrl               ),   // 1-bit DDR output
      .C                        (gb_tx_clk                  ),   // 1-bit clock input
      .CE                       (1'b1                       ), // 1-bit clock enable input
      .D1                       (gb_tx_data_en              ), // 1-bit data input (positive edge)
      .D2                       (gb_tx_data_err             ), // 1-bit data input (negative edge)
      .R                        (~rst_n                     ),   // 1-bit reset
      .S                        (1'b0                       )    // 1-bit set
);

ODDR #(
    .DDR_CLK_EDGE               ("SAME_EDGE"                ), // "OPPOSITE_EDGE" or "SAME_EDGE" 
    .INIT                       (1'b0                       ),    // Initial value of Q: 1'b0 or 1'b1
    .SRTYPE                     ("SYNC"                     ) // Set/Reset type: "SYNC" or "ASYNC" 
) ODDR_clk (
      .Q                        (tx_clk                     ),   // 1-bit DDR output
      .C                        (gb_tx_clk                  ),   // 1-bit clock input
      .CE                       (1'b1                       ), // 1-bit clock enable input
      .D1                       (1'b1                       ), // 1-bit data input (positive edge)
      .D2                       (1'b0                       ), // 1-bit data input (negative edge)
      .R                        (~rst_n                     ),   // 1-bit reset
      .S                        (1'b0                       )    // 1-bit set
);

genvar i;
    generate
        for (i = 0; i < 4; i = i+1) begin
            ODDR #(
                .DDR_CLK_EDGE               ("SAME_EDGE"                ), // "OPPOSITE_EDGE" or "SAME_EDGE" 
                .INIT                       (1'b0                       ),    // Initial value of Q: 1'b0 or 1'b1
                .SRTYPE                     ("SYNC"                     ) // Set/Reset type: "SYNC" or "ASYNC" 
            ) ODDR_data (
                .Q                          (tx_data[i]                 ),   // 1-bit DDR output
                .C                          (gb_tx_clk                  ),   // 1-bit clock input
                .CE                         (1'b1                       ), // 1-bit clock enable input
                .D1                         (gb_tx_data[i]              ), // 1-bit data input (positive edge)
                .D2                         (gb_tx_data[4+i]            ), // 1-bit data input (negative edge)
                .R                          (~rst_n                     ),   // 1-bit reset
                .S                          (1'b0                       )    // 1-bit set
            );
      end
   endgenerate
endmodule


2.2、iddr顶层模块

例化了一个PLL(输入125Mhz时钟,输出125mhz,90度相位时钟,用于时钟中心位数据采集),和一个iddr子模块;

`timescale 1ns / 1ps
module IDDR_TOP(
    //System Interfaces
    input                   sclk            ,
    input                   rst_n           ,
    //Gigbit Interfaces
    output  reg             phy_rst_n       ,
    input           [ 3:0]  rx_data         ,
    input                   rx_ctrl         ,
    output          [ 7:0]  gb_rx_data      ,
    output                  rx_clk_90       ,
    input                   rx_clk      
);
 
reg                 [20:0]  phy_rst_cnt     ;
//wire                        rx_clk_90       ;
//iddr_ctrl_inst
wire                        gb_rx_data_en   ;
wire                        gb_rx_data_err  ;

clk_wiz_0 clk_wiz_0_inst(
    // Clock out ports
    .clk_out1               (rx_clk_90                  ),     // output clk_out1
    // Clock in ports
    .clk_in1                (rx_clk                     )
);     
                            
iddr_ctrl iddr_ctrl_inst(
    //System Interfaces
    .rst_n                  (rst_n                      ),
    //Gigabit Interfaces
    .rx_data                (rx_data                    ),
    .rx_ctrl                (rx_ctrl                    ),
    .rx_clk                 (rx_clk_90                  ),
    //Communication Interfaces
    .gb_rx_data             (gb_rx_data                 ),
    .gb_rx_data_en          (gb_rx_data_en              ), 
    .gb_rx_data_err         (gb_rx_data_err             )     
);

always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        phy_rst_cnt         <=      21'd0;
    else if(phy_rst_cnt[20] == 1'b0)
        phy_rst_cnt         <=      phy_rst_cnt + 1'b1;
    else
        phy_rst_cnt         <=      phy_rst_cnt;
//phy芯片复位
always @(posedge sclk or negedge rst_n)
    if(rst_n == 1'b0)
        phy_rst_n           <=      1'b0;
    else if(phy_rst_cnt[20] == 1'b1)
        phy_rst_n           <=      1'b1;
    else
        phy_rst_n           <=      phy_rst_n;

endmodule


2.3、iddr子模块

将oddr输出的4bit数据转换成8bit数据。

`timescale 1ns / 1ps
module iddr_ctrl(
    //System Interfaces
    input                   rst_n               ,
    //Gigabit Interfaces
    input           [ 3:0]  rx_data             ,
    input                   rx_ctrl             ,
    input                   rx_clk              ,
    //Communication Interfaces
    output  reg     [ 7:0]  gb_rx_data          ,
    output  reg             gb_rx_data_en       , 
    output  reg             gb_rx_data_err           
);
 

wire                [ 7:0]  data                ;
wire                        data_en             ; 
wire                        data_err            ;        
 
IDDR #(
    .DDR_CLK_EDGE           ("OPPOSITE_EDGE"            ), // "OPPOSITE_EDGE", "SAME_EDGE" 
                                                           //    or "SAME_EDGE_PIPELINED" 
    .INIT_Q1                (1'b0                       ), // Initial value of Q1: 1'b0 or 1'b1
    .INIT_Q2                (1'b0                       ), // Initial value of Q2: 1'b0 or 1'b1
    .SRTYPE                 ("SYNC"                     )  // Set/Reset type: "SYNC" or "ASYNC" 
) IDDR_ctrl (
    .Q1                     (data_en                    ), // 1-bit output for positive edge of clock
    .Q2                     (data_err                   ), // 1-bit output for negative edge of clock
    .C                      (rx_clk                     ),   // 1-bit clock input
    .CE                     (1'b1                       ), // 1-bit clock enable input
    .D                      (rx_ctrl                    ),   // 1-bit DDR data input
    .R                      (~rst_n                     ),   // 1-bit reset
    .S                      (1'b0                       )    // 1-bit set
   );


genvar i;
    generate
        for (i = 0; i < 4; i = i+1) begin
            IDDR #(
                .DDR_CLK_EDGE           ("OPPOSITE_EDGE"            ), // "OPPOSITE_EDGE", "SAME_EDGE" 
                                                                       //    or "SAME_EDGE_PIPELINED" 
                .INIT_Q1                (1'b0                       ), // Initial value of Q1: 1'b0 or 1'b1
                .INIT_Q2                (1'b0                       ), // Initial value of Q2: 1'b0 or 1'b1
                .SRTYPE                 ("SYNC"                     )  // Set/Reset type: "SYNC" or "ASYNC" 
            ) IDDR_ctrl (
                .Q1                     (data[i]                    ), // 1-bit output for positive edge of clock
                .Q2                     (data[4+i]                  ), // 1-bit output for negative edge of clock
                .C                      (rx_clk                     ),   // 1-bit clock input
                .CE                     (1'b1                       ), // 1-bit clock enable input
                .D                      (rx_data[i]                 ),   // 1-bit DDR data input
                .R                      (~rst_n                     ),   // 1-bit reset
                .S                      (1'b0                       )    // 1-bit set
            );
      end
   endgenerate
  
always @(posedge rx_clk or negedge rst_n)
    if(rst_n == 1'b0)
        gb_rx_data          <=      8'd0;
    else 
        gb_rx_data          <=      data;

always @(posedge rx_clk or negedge rst_n)
    if(rst_n == 1'b0)
        gb_rx_data_err      <=      1'b0;
    else 
        gb_rx_data_err      <=      data_err;

always @(posedge rx_clk or negedge rst_n)
     if(rst_n == 1'b0)
        gb_rx_data_en       <=      1'b0;
     else
        gb_rx_data_en       <=      data_en;

endmodule


3、仿真

      仿真时钟50mhz。需要仿真21ms才能看到计数器开始计数,数据开始循环(因为这里为了兼容以太网口的phy芯片,需要一小段时间进行初始化);
在这里插入图片描述

`timescale 1ns / 1ps
`define     CLOCK   8
//测试功能:双沿4bit数据变单沿8bit数据——FPGA接收,单沿8bit数据变双沿4bit数据——FPGA发送;增加DIFF接口;
module tb_eth_i_oddr_diff;
reg                     sclk            ;
//reg                     sclk_p          ;
//reg                     sclk_n          ;
reg                     rst_n           ;
//reg                     gb_tx_clk       ;              
wire                    tx_clk          ; 

initial begin
    rst_n           <=      1'b0;
//    gb_tx_clk       =       1'b0;
    sclk            =       1'b0;
//    sclk_p          =       1'b0;
//    sclk_n          =       1'b1;
    #(3000*`CLOCK)
    rst_n           <=      1'b1;
end
//always  #(`CLOCK/2)     gb_tx_clk       =       ~gb_tx_clk;
always  #(10)           sclk            =       ~sclk;

//always  #(10)           sclk_p          =     ~sclk_p;
//always  #(10)           sclk_n          =     ~sclk_n;

wire        dclk_p;
wire        dclk_n;
wire [3:0] gb_data_p;
wire [3:0] gb_data_n;

I_ODDR_ETH_DIFF_TOP u_I_ODDR_ETH_DIFF_TOP(
    //System Interfaces
    .sclk         (sclk) ,
    .rst_n          (rst_n) ,
    
    .rx_clk_p        (dclk_p) ,
    .rx_clk_n        (dclk_n) ,    
    .rx_data_p   (gb_data_p) ,
    .rx_data_n   (gb_data_n) ,
    
    .tx_clk_p        (dclk_p) ,
    .tx_clk_n        (dclk_n) ,
    .tx_data_p      (gb_data_p),
    .tx_data_n      (gb_data_n),
    
    .gb_out_clk_p   () ,
    .gb_out_clk_n   () ,
    .gb_out_data_p  () ,
    .gb_out_data_n  () 
);

endmodule


最好使用Modelsim进行仿真,数据比较详细
设计文件路径:I_ODDR_DIFF_test\I_ODDR_DIFF\I_ODDR_LVDS.srcs\sources_1\new
编译路径:I_ODDR_DIFF_test\I_ODDR_DIFF\I_ODDR_LVDS.sim\sim_1\behav\modelsim\compile.bat
启动路径:I_ODDR_DIFF_test\I_ODDR_DIFF\I_ODDR_LVDS.sim\sim_1\behav\modelsim\simulate.bat

波形归类脚本:

onerror {resume}
quietly WaveActivateNextPane {} 0
add wave -noupdate /tb_eth_i_oddr_diff/sclk
add wave -noupdate /tb_eth_i_oddr_diff/rst_n
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/gb_tx_cnt
add wave -noupdate /glbl/GSR

add wave -noupdate -divider ODDR
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/tx_clk
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/tx_clk_p
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/tx_clk_n
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/gb_tx_data
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/tx_data
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/tx_data_p
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/tx_data_n

add wave -noupdate -divider IDDR
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/gbit_top_inat/phy_rst_n
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/rx_clk
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/gbit_top_inat/rx_clk_90
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/gb_out_clk_p
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/gb_out_clk_n
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/gb_out_data
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/gb_out_data_p
add wave -noupdate /tb_eth_i_oddr_diff/u_I_ODDR_ETH_DIFF_TOP/gb_out_data_n
TreeUpdate [SetDefaultTree]
WaveRestoreCursors {{Cursor 1} {20995528826 ps} 0}
quietly wave cursor active 1
configure wave -namecolwidth 382
configure wave -valuecolwidth 100
configure wave -justifyvalue left
configure wave -signalnamewidth 0
configure wave -snapdistance 10
configure wave -datasetprefix 0
configure wave -rowmargin 4
configure wave -childrowmargin 2
configure wave -gridoffset 0
configure wave -gridperiod 1
configure wave -griddelta 40
configure wave -timeline 0
configure wave -timelineunits ns
update
WaveRestoreZoom {20996884656 ps} {20997587062 ps}

4、注意

      本实验主要是测IDDR+ODDR+差分接口,仿真满足RGMII协议。如果用于实际板测以太网实验,有个bug,但是因为这个工程我做的比较久了,当时那个bug没有做笔记,现在一时想不起来😂😂😂😂😂
      后面我如果想起来,再补充到这里。

5、下载工程及仿真

在这里插入图片描述
在这里插入图片描述
下载链接:RGMII回环:IDDR+ODDR+差分接口
https://download.csdn.net/download/weixin_46423500/88527095

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/137683.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2023/11/12总结

踩坑记录&#xff1a; org.springframework.jdbc.BadSqlGrammarException: ### Error querying database. Cause: java.sql.SQLSyntaxErrorException: Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column elm.flavors.id which is …

连通块中点的数量(并查集)

给定一个包含 n 个点&#xff08;编号为 1∼n&#xff09;的无向图&#xff0c;初始时图中没有边。 现在要进行 m 个操作&#xff0c;操作共有三种&#xff1a; C a b&#xff0c;在点 a 和点 b 之间连一条边&#xff0c;a 和 b 可能相等&#xff1b;Q1 a b&#xff0c;询问点…

TensorFlow学习笔记--(3)张量的常用运算函数

损失函数及求偏导 通过 tf.GradientTape 函数来指定损失函数的变量以及表达式 最后通过 gradient(%损失函数%,%偏导对象%) 来获取求偏导的结果 独热编码 给出一组特征值 来对图像进行分类 可以用独热编码 0的概率是第0种 1的概率是第1种 0的概率是第二种 tf.one_hot(%某标签…

木疙瘩踩坑日记-容易忽略的一些BUG

在一开始玩家务必很清楚这三个概念 图形&#xff1a;舞台上元素的最小单位。软件自带的以及外部导入的图片默认都是图形&#xff01;最朴素的元素&#xff01;可以添加预制动画、关键帧动画、进度动画&#xff08;软件自带的形状&#xff09; 元件&#xff1a;一个可以内部封…

阿里云国际站:全球加速GA

文章目录 一、前言 二、阿里云全球加速的概念 三、阿里云全球加速的功能优势 四、阿里云全球加速的原理 五、阿里云全球加速的应用场景 六、写在最后 一、前言 随着互联网的快速发展&#xff0c;网站速度已经成为了用户访问体验的一个重要指标。阿里云加速作为一种新的技…

Web开发:一键复制到剪切板功能实现思路

在很多网页页面中我们都使用到过一键复制内容到剪切板的小功能&#xff0c;那么&#xff0c;具体如何实现呢&#xff1f;下面来讲述基于原生JavaScript API的两种实现思路。 同步方式&#xff1a;document.execCommand 这种方式&#xff1a; ①优点&#xff1a;是最传统的方法…

把字符串转换为整数函数atoi

今天我们来认识一个函数&#xff0c;叫atoi&#xff0c;我们开始研究它吧&#xff01; 1.认识atoi 1.函数功能&#xff1a;将字符串转换为整数 只能将整数字符串转换为整数&#xff0c;不能转换字符字符串 2.头文件&#xff1a;#include<stdlib.h> 3.使用格式&#xff1a…

文件上传 [ACTF2020 新生赛]Upload1

打开题目&#xff0c;发现是一道文件上传题目 随便上传个一句话木马上去 发现网站前端有白名单限制&#xff0c;只能上传含有jpg&#xff0c;png&#xff0c;gif的后缀文件 最开始我想到的做法是先上传htaccess文件&#xff0c;bp修改文件头&#xff0c;上传成功后然后再上传以…

数据结构与算法(二)动态规划(Java)

目录 一、简介1.1 什么是动态规划&#xff1f;1.2 动态规划的两种形式1&#xff09;自顶向下的备忘录法&#xff08;记忆化搜索法&#xff09;2&#xff09;自底向上的动态规划3&#xff09;两种方法对比 1.3 动态规划的 3 大步骤 二、小试牛刀&#xff1a;钢条切割2.1 题目描述…

Linux系统上64位ATT风格汇编语言计算乘方堆栈图分析(只有一层调用)

参考博文&#xff1a;《怎样深入理解堆和栈》 《关于寻址方式一篇就够了》 《堆栈、栈帧、函数调用过程》 《gdb 调试中-i frame命令之堆栈信息说明》 《【TARS】GDB 调试进阶「0x02」》 栈与栈帧的关系 一个程序在运行过程中&#xff0c;操作系统会在内存中分配多个区域给这…

设计模式-工厂方法

工厂方法是一种创建型设计模式&#xff0c;其在父类中提供一个创建对象的方法&#xff0c;允许子类决定实例化对象的类型。 问题 假设你开设了一个汽车工厂。创业初期工厂只能生产宝马这一款车&#xff0c;因此大部分代码都位于名为宝马的类中。 工厂效益非常好&#xff0c;为…

牛客刷题记录11.12 (10/6)

操作复杂度 map vector set deque 抽线类 C11 :两个新特性 &#xff1a; override, finnal override:子类必须覆写父类的虚函数&#xff0c;否则报错&#xff0c; finnal:类中函数使用后&#xff0c;子类不能重写该函数&#xff1b;若修饰类&#xff0c;该类不能被继承&#…

生成只需要4step,像lora一样使用LCM

SDXL in 4 steps with Latent Consistency LoRAs 在comfyui里实测LCM lora 原先需要20步一张图&#xff0c;现在20步&#xff0c;4张图。comfyui最新版新增了lcm采样器&#xff0c;支持lcm lora的工作流。 LCM lora模型下载&#xff1a; huggingface.co/latent-consistency/lcm…

BGP属性实验

一、实验拓扑 二、实验要求 按照图示配置IP地址以及在路由器上配置BGP&#xff0c;使其全网通 1、配置IP地址 2、配置AS 200内的OSPF [AR2]ospf 1 router-id 2.2.2.2 [AR2-ospf-1]a 0 [AR2-ospf-1-area-0.0.0.0]network 2.2.2.2 0.0.0.0 [AR2-ospf-1-area-0.0.0.0]network 1…

深入了解SpringMvc接收数据

目录 一、访问路径&#xff08;RequestMapping&#xff09; 1.1 访问路径注解作用域 1.2 路径精准&#xff08;模糊&#xff09;匹配 1.3 访问路径限制请求方式 1.4 进阶访问路径请求注解 1.5 与WebServlet的区别 二、接收请求数据 2.1 请求param参数 2.2 请求路径参数 2.3 请求…

【GEE】10、使用 Google 地球引擎创建图形用户界面【GUI开发】

1简介 在本模块中&#xff0c;我们将讨论以下概念&#xff1a; 用于生成图形用户界面的 GEE 对象。如何开发具有交互元素的面板。如何将地理处理元素连接到交互式元素。 2背景 在过去的十个单元中&#xff0c;我们展示了 Google Earth Engine 可以成为一种重要且高效的资源&a…

代码分析之-广东省公共资源交易平台

广东省公共资源交易平台 hex: function Xq() {return bg || (bg 1,function(e, t) {(function(n, u) {e.exports u()})(an, function() {var n n || function(u, o) {var r;if (typeof window < "u" && window.crypto && (r window.crypto)…

【差旅游记】启程-新疆哈密(1)

哈喽&#xff0c;大家好&#xff0c;我是雷工。 最近有个新疆罗布泊的项目要去现场&#xff0c;领导安排我过去&#xff0c;这也算第一次到新疆&#xff0c;记录下去新疆的过程。 01、天有不测风云 本来预定的是11月2号石家庄飞成都&#xff0c;成都转机到哈密&#xff0c;但…

数据结构----顺序栈的操作

1.顺序栈的存储结构 typedef int SElemType; typedef int Status; typedef struct{SElemType *top,*base;//定义栈顶和栈底指针int stacksize;//定义栈的容量 }SqStack; 2.初始化栈 Status InitStack(SqStack &S){//初始化一个空栈S.basenew SElemType[MAXSIZE];//为顺序…

【Java SE】类和对象(下)

接着上文 目录 6. 封装 6.1 封装的概念 6.2 访问限定符 6.3 封装扩展之包 6.3.1 包的概念 6.3.2 自定义包 6.3.3 导入包中的类 6.3.4 包的访问权限控制举例 6.3.5 常见的包 7. static成员 7.1 static修饰成员变量 ​编辑 ​编辑 7.2 static修饰成员方法 8. 代…