2023亚太杯数学建模A题B题C题思路代码分析

文章目录

  • 0 赛题思路
  • 1 竞赛信息
  • 2 竞赛时间
  • 3 建模常见问题类型
    • 3.1 分类问题
    • 3.2 优化问题
    • 3.3 预测问题
    • 3.4 评价问题
  • 4 建模资料
  • 5 最后

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 竞赛信息

2023年第十三届亚太地区大学生数学建模竞赛(以下简称“竞赛”)是北京图象图形学学会主办的亚太地区大学生学科类竞赛,竞赛由亚太地区大学生数学建模竞赛组委会负责组织,欢迎各高等院校按照竞赛章程及有关规定组织同学报名参赛。

2022年第十二届亚太地区大学生数学建模竞赛共有9700支队伍969所高校2万7千多名学生报名参赛。参赛高校覆盖北京大学、清华大学、浙江大学、同济大学、上海交通大学、复旦大学、四川大学、大连理工大学等全部的39所985高校和114所211高校。

除中国大陆高校外,本次参赛队伍还有来自美国的加州大学伯克利分校、约翰斯霍普金斯大学、纽约大学;英国的密德萨斯大学、牛津大学、利物浦大学、诺丁汉大学、爱丁堡大学;德国的亚琛工业大学、 北黑森应用技术大学;俄罗斯的圣彼得堡国立建筑大学;澳大利亚的墨尔本大学、悉尼大学;马来西亚的马来亚大学;日本的東北大学;法国的巴黎先贤祠-阿萨斯大学;澳门地区的澳门城市大学、澳门科技大学、澳门理工学院、澳门大学;香港地区的北京师范大学-香港浸会大学联合国际学院、香港中文大学、香港科技大学、香港理工大学;中外合作的宁波诺丁汉大学、深圳北理莫斯科大学、西安交通利物浦大学等高校。

目前竞赛具有较高的国际影响力,在国内高校中是作为美赛热身赛、保研加分、综合测评加分、创新奖学金等评定竞赛之一。

2 竞赛时间

报名结束时间:2023年11月22日

比赛开始时间:2023年11月23日(周四)6:00

比赛结束时间:2023年11月27日(周一)9:00

3 建模常见问题类型

趁现在赛题还没更新,A君给大家汇总一下数学建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题,对应的解法A君也相应给出

分别为:

分类模型

优化模型

预测模型

评价模型

3.1 分类问题

判别分析:

又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数;用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标;据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

聚类分析:

聚类分析或聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。

聚类分析本身不是某一种特定的算法,而是一个大体上的需要解决的任务。它可以通过不同的算法来实现,这些算法在理解集群的构成以及如何有效地找到它们等方面有很大的不同。

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

3.2 优化问题

线性规划:

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于生产计划、物流运输、资源分配、金融投资等领域。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

动态规划:

包括背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等。

动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

多目标规划:

多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。任何多目标规划问题,都由两个基本部分组成:

(1)两个以上的目标函数;

(2)若干个约束条件。有n个决策变量,k个目标函数, m个约束方程,则:

Z=F(X)是k维函数向量,Φ(X)是m维函数向量;G是m维常数向量;

3.3 预测问题

回归拟合预测

拟合预测是建立一个模型去逼近实际数据序列的过程,适用于发展性的体系。建立模型时,通常都要指定一个有明确意义的时间原点和时间单位。而且,当t趋向于无穷大时,模型应当仍然有意义。将拟合预测单独作为一类体系研究,其意义在于强调其唯“象”性。一个预测模型的建立,要尽可能符合实际体系,这是拟合的原则。拟合的程度可以用最小二乘方、最大拟然性、最小绝对偏差来衡量。

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

马尔科夫预测:是一种可以用来进行组织的内部人力资源供给预测的方法.它的基本 思想是找出过去人事变动的 规律,以此来推测未来的人事变动趋势.转换矩阵实际上是转换概率矩阵,描述的是组织中员工流入,流出和内部流动的整体形式,可以作为预测内部劳动力供给的基础.

BP神经网络预测

BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。

支持向量机法

支持向量机(SVM)也称为支持向量网络[1],是使用分类与回归分析来分析数据的监督学习模型及其相关的学习算法。在给定一组训练样本后,每个训练样本被标记为属于两个类别中的一个或另一个。支持向量机(SVM)的训练算法会创建一个将新的样本分配给两个类别之一的模型,使其成为非概率二元线性分类器(尽管在概率分类设置中,存在像普拉托校正这样的方法使用支持向量机)。支持向量机模型将样本表示为在空间中的映射的点,这样具有单一类别的样本能尽可能明显的间隔分开出来。所有这样新的样本映射到同一空间,就可以基于它们落在间隔的哪一侧来预测属于哪一类别。

3.4 评价问题

层次分析法

是指将一个复杂的 多目标决策问题 作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

优劣解距离法

又称理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最大值和最小值,通过计算每个方案到理想方案的相对贴近度,即靠近正理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。

模糊综合评价法

是一种基于模糊数学的综合评标方法。 该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。 它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

灰色关联分析法(灰色综合评价法)

对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

典型相关分析法:是对互协方差矩阵的一种理解,是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

因子分析法(降维)

因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

BP神经网络综合评价法

是一种按误差逆传播算法训练的多层前馈网络,是应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

4 建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

5 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/135335.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

冯·诺伊曼体系结构--操作系统

文章目录 1.认识冯诺依曼系统1.1约翰冯诺依曼1.2冯诺依曼结构1.3存储器的读写速度1.4对冯诺依曼结构的认识1.5冯诺依曼结构在生活中的演示 2.操作系统--“搞管理”的软件2.1概念2.2OS存在的意义2.3管理的方式2.4系统调用和库函数概念 1.认识冯诺依曼系统 1.1约翰冯诺依曼 1.2冯…

Leetcode—69.x的平方根【简单】

2023每日刷题&#xff08;二十七&#xff09; Leetcode—69.x的平方根 直接法实现代码 int mySqrt(int x) {long long i 0;while(i * i < x) {i;}if(i * i > x) {return i - 1;}return i; }运行结果 二分法实现代码 int mySqrt(int x) {long long left 0, right (l…

Openlayers:自定义Controls

Openlayers是一款优秀的二维开源地图框架,支持矢量/栅格图层,支持移动端,并且易于自定义和拓展。下面来讲述一下自定义Control的基本思路。 openlayers-features 问题描述 最近在做个人项目时,遇到了一个小问题,就是在地图中心添加一个十字针形状的符号,用来表示地图中心…

Clickhouse学习笔记(12)—— 物化视图

ClickHouse 的物化视图是一种查询结果的持久化&#xff0c;与普通视图对比&#xff0c;其不仅保存了查询的逻辑&#xff0c;还保存了查询结果&#xff1b; 物化视图与普通视图的区别 普通视图不保存数据&#xff0c;保存的仅仅是查询语句&#xff0c;查询的时候还是从原表读取…

链表经典OJ题(链表回文结构,链表带环,链表的深拷贝)

目录 前言 1.反转一个单链表。 2. 给定一个带有头结点 head 的非空单链表&#xff0c;返回链表的中间结点。 3.链表的回文结构。 4.链表带环问题&#xff08;*****&#xff09; 4.1是否带环 4.2 入环的节点 5.随机链表的复制&#xff08;链表的深拷贝&#xff09; 前言…

会员题-力扣408-有效单词缩写

有效单词缩写 字符串可以用 缩写 进行表示&#xff0c;缩写 的方法是将任意数量的 不相邻 的子字符串替换为相应子串的长度。例如&#xff0c;字符串 “substitution” 可以缩写为&#xff08;不止这几种方法&#xff09;&#xff1a; “s10n” (“s ubstitutio n”) “sub4…

numpy 基础使用

NumPy是Python中科学计算的基础包。它是一个Python库&#xff0c;提供多维数组对象&#xff0c;各种派生对象&#xff08;如掩码数组和矩阵&#xff09;&#xff0c;以及用于数组快速操作的各种API&#xff0c;有包括数学、逻辑、形状操作、排序、选择、输入输出、离散傅立叶变…

2.OpenResty系列之Lua入门

1. Lua简介 Lua是一种轻量级的、高效的脚本编程语言&#xff0c;最初由巴西里约热内卢天主教大学的一个研究小组开发和发布。Lua的设计目标是提供一个简单、可嵌入、可扩展的脚本语言&#xff0c;官方实现完全采用 ANSI C 编写&#xff0c;能以 C 程序库的形式嵌入到其他应用程…

【数据结构初阶】顺序表SeqList

描述 顺序表我们可以把它想象成在一个表格里面填数据&#xff0c;并对数据做调整&#xff1b; 那我们的第一个问题是&#xff1a;怎么样在创建出足够的空间呢&#xff1f; 我们可以去堆上申请&#xff0c;用一个指针指向一块空间&#xff0c;如果申请的空间不够&#xff0c;我…

第十六届山东省职业院校技能大赛高职组“软件测试”赛项规程

第十六届山东省职业院校技能大赛 高职组“软件测试”赛项规程 一、赛项名称 赛项名称&#xff1a;软件测试 赛项组别&#xff1a;高职组 赛项专业大类&#xff1a;电子与信息大类 二、竞赛目的 软件是新一代信息技术的灵魂&#xff0c;是数字经济发展的基础&#xff0c;是…

汽车ECU的虚拟化技术初探(一)

目录 1.为什么要提汽车ECU的虚拟化&#xff1f; 2.虚拟化技术分类 2.1 硬件虚拟化 2.2 操作系统虚拟化 问题引入&#xff1a; Hypervisor是如何来管理和隔离硬件资源&#xff0c;保证各个不同功能的应用程序的资源使用安全和资源调度&#xff1f;没有MMU就做不了虚拟化&am…

Clickhouse学习笔记(11)—— 数据一致性

使用合并树引擎时&#xff0c;无论是ReplacingMergeTree还是SummingMergeTree&#xff0c;都只能保证数据的最终一致性&#xff0c;因为数据的去重、聚合等操作会在数据合并的期间进行&#xff0c;而合并会在后台以一个不确定的时间进行&#xff0c;因此无法预先计划&#xff1…

基于SSM的停车场管理系统设计与实现

项目描述 临近学期结束&#xff0c;还是毕业设计&#xff0c;你还在做java程序网络编程&#xff0c;期末作业&#xff0c;老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。你想解决的问题&#xff0c;今天给大家介绍…

Spring基础学习——web

Spring基础学习——web 一、Spring整合Web环境1.1 JavaWeb三大组件作用及其特点1.2 Spring整合Web环境的思路及实现1.3 Spring开发Web环境组件spring-web1.4 web层MVC框架思想与设计思路 一、Spring整合Web环境 1.1 JavaWeb三大组件作用及其特点 在Java语言当中&#xff0c;w…

creo6.0教程之旋转,扫描

目录 一、旋转&#xff1a;二、扫描&#xff1a; 一、旋转&#xff1a; 案例1&#xff1a;旋转一个球&#xff1a; 任意一个平面绘制草图&#xff1a; 确定草图后&#xff0c;然后退出草图&#xff0c;点击旋转&#xff1a; 案例2&#xff1a;旋转一个杯子雏形&#xff1a; …

在以TAB为首地址的字存储区中存放有N个无符号数,试统计低3位全为1的数的个数(个数设为≤9),并显示。

;默认认采用ML6.11汇编程序 DATAS SEGMENT;此处输入数据段代码TAB DW -7,7,15,20,21N($-TAB)/2;G DW 0 DATAS ENDS STACKS SEGMENT;此处处输入堆栈段代码; DB 200 DUP(0) STACKS ENDS CODES SEGMENTASSUME CS:CODES,DS: DATAS, SS:STACKS START:MOV AX, DATASMOV DS,AX;此处输入…

swift和OC混编报错问题

1.‘objc’ instance method in extension of subclass of ‘xxx’ requires iOS 13.0.0 需要把实现从扩展移到主类实现。iOS13一下扩展不支持objc 2.using bridging headers with framework targets is unsupported 报错 这个错误通常指的是在一个框架目标中使用桥接头是不…

01:2440----点灯大师

目录 一:点亮一个LED 1:原理图 2:寄存器 3:2440的框架和启动过程 A:框架 B:启动过程 4:代码 5:ARM知识补充 6:c语言和汇编的应用 A:代码 B:分析汇编语言 C:内存空间 7:内部机制 二:点亮2个灯 三:流水灯 四:按键控制LED 1:原理图 2:寄存器配置 3:代码 一:点…

postgresql|数据库|提升查询性能的物化视图解析

前言&#xff1a; 我们一般认为数字的世界是一个虚拟的世界&#xff0c;OK&#xff0c;但我们其实有些需求是和现实世界一模一样的&#xff0c;比如&#xff0c;数据库尤其是关系型数据库&#xff0c;希望在使用的数据库能够更快&#xff08;查询速度&#xff09;&#xff0c;…

亚马逊云AI应用科技创新下的Amazon SageMaker使用教程

目录 Amazon SageMaker简介 Amazon SageMaker在控制台的使用 模型的各项参数 pytorch训练绘图部分代码 Amazon SageMaker简介 亚马逊SageMaker是一种完全托管的机器学习服务。借助 SageMaker&#xff0c;数据科学家和开发人员可以快速、轻松地构建和训练机器学习模型&#…