Pytroch损失函数、反向传播和优化器、Sequential使用

Pytroch_Sequential使用、损失函数、反向传播和优化器

文章目录

    • nn.Sequential
    • 搭建小实战
    • 损失函数与反向传播
    • 优化器

nn.Sequential

nn.Sequential是一个有序的容器,用于搭建神经网络的模块被按照被传入构造器的顺序添加到nn.Sequential()容器中。

在这里插入图片描述

在这里插入图片描述

import torch.nn  as nn
from collections import OrderedDict
# Using Sequential to create a small model. When `model` is run,
# input will first be passed to `Conv2d(1,20,5)`. The output of
# `Conv2d(1,20,5)` will be used as the input to the first
# `ReLU`; the output of the first `ReLU` will become the input
# for `Conv2d(20,64,5)`. Finally, the output of
# `Conv2d(20,64,5)` will be used as input to the second `ReLU`
model = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )

# Using Sequential with OrderedDict. This is functionally the
# same as the above code
model = nn.Sequential(OrderedDict([
          ('conv1', nn.Conv2d(1,20,5)),
          ('relu1', nn.ReLU()),
          ('conv2', nn.Conv2d(20,64,5)),
          ('relu2', nn.ReLU())
        ]))
print(model)
Sequential(
  (conv1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
  (relu1): ReLU()
  (conv2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
  (relu2): ReLU()
)

搭建小实战

还是以 C I F A R − 10 m o d e l CIFAR-10 model CIFAR10model为例

在这里插入图片描述

  1. 输入图像是3通道的32×32的
  2. 先后经过卷积层(5×5的卷积核)
  3. 最大池化层(2×2的池化核)
  4. 卷积层(5×5的卷积核)
  5. 最大池化层(2×2的池化核)
  6. 卷积层(5×5的卷积核)
  7. 最大池化层(2×2的池化核)
  8. 拉直(flatten)
  9. 全连接层的处理,
  10. 最后输出的大小为10

基于以上的介绍,后续将利用Pytorch构建模型,实现 C I F A R − 10 m o d e l s t r u c t u r e CIFAR-10 \quad model \quad structure CIFAR10modelstructure

参数说明:in_channels: int、out_channels: int,kernel_size: Union由input、特征图以及卷积核即可看出,而stride、padding需要通过公式计算得到。

特得到的具体的特征图尺寸的计算公式如下:
在这里插入图片描述

inputs : 3@32x32,3通道32x32的图片,5*5的kernel --> 特征图(Feature maps) : 32@32x32

即经过32个3@5x5的卷积层,输出尺寸没有变化(有x个卷积核即由x个卷积核,卷积核的通道数与输入的通道数相等)

由上述的计算公式来计算出 s t r i d e stride stride p a d d i n g padding padding

在这里插入图片描述

卷积层中的stride默认为1

池化层中的stride默认为kernel_size的大小

import torch
import torch.nn as nn
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
class BS(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3,
                               out_channels=32,
                               kernel_size=5,
                               stride=1,
                               padding=2)  #stride和padding计算得到
        self.maxpool1 = nn.MaxPool2d(kernel_size=2)
        self.conv2 = nn.Conv2d(in_channels=32,
                               out_channels=32,
                               kernel_size=5,
                               stride=1,
                               padding=2)
        self.maxpool2 = nn.MaxPool2d(kernel_size=2)
        self.conv3 = nn.Conv2d(in_channels=32,
                               out_channels=64,
                               kernel_size=5,
                               padding=2)
        self.maxpool3 = nn.MaxPool2d(kernel_size=2)
        self.flatten = nn.Flatten()  #变为63*4*4=1024
        self.linear1 = nn.Linear(in_features=1024, out_features=64)
        self.linear2 = nn.Linear(in_features=64, out_features=10)
        
        
    def forward(self,x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x
    
bs = BS()
bs
BS(
  (conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear1): Linear(in_features=1024, out_features=64, bias=True)
  (linear2): Linear(in_features=64, out_features=10, bias=True)
)

利用Sequential优化代码,并在tensorboard显示

.add_graph函数用于将PyTorch模型图添加到TensorBoard中。通过这个函数,您可以以可视化的方式展示模型的计算图,使其他人更容易理解您的模型结构和工作流程。

add_graph(model, input_to_model, strip_default_attributes=True)
  • model:要添加的PyTorch模型。
  • input_to_model:用于生成模型图的输入数据。
  • strip_default_attributes:是否删除模型中的默认属性,默认为True。
class BS(nn.Module):

    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(in_channels=3,
                               out_channels=32,
                               kernel_size=5,
                               stride=1,
                               padding=2),  #stride和padding计算得到
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32,
                                   out_channels=32,
                                   kernel_size=5,
                                   stride=1,
                                   padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32,
                                   out_channels=64,
                                   kernel_size=5,
                                   padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Flatten(),  #变为64*4*4=1024
            nn.Linear(in_features=1024, out_features=64),
            nn.Linear(in_features=64, out_features=10),
        )
    
    def forward(self,x):
        x = self.model(x)
        return x
    
bs = BS()
print(bs)
BS(
  (model): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
# 在tensorboard中显示
input_ = torch.ones((64,3,32,32))
writer = SummaryWriter(".logs")
writer.add_graph(bs, input_)  # 定义的模型,数据
writer.close()

利用tensorboard可视化网络结构graph如下
在这里插入图片描述

损失函数与反向传播

计算模型目标输出和实际输出之间的误差。并通过反向传播算法更新模型的权重和参数,以减小预测输出和实际输出之间的误差。

  • 计算实际输出和目标输出之间的差距
  • 为更新输出提供一定依据(反向传播)

不同的模型用的损失函数一般也不一样。
在这里插入图片描述

平均绝对误差MAE Mean Absolute Error

torch.nn.L1Loss(size_average=None, reduce=None, reduction=‘mean’)

在这里插入图片描述

import torch
import torch.nn as nn
# 实例化
criterion1 = nn.L1Loss(reduction='mean')#mean
criterion2 = nn.L1Loss(reduction="sum")#sum
output = torch.tensor([1.0, 2.0, 3.0])#或dtype=torch.float32
target = torch.tensor([2.0, 2.0, 2.0])#或dtype=torch.float32
# 平均值损失值
loss = criterion1(output, target)
print(loss)  # 输出:tensor(0.6667)
# 误差和
loss1 = criterion2(output,target)
print(loss1) # tensor(2.)
tensor(0.6667)
tensor(2.)
loss = nn.L1Loss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
output = loss(input, target)
output.backward()
output
tensor(1.0721, grad_fn=<MeanBackward0>)

均方误差MSE Mean-Square Error
在这里插入图片描述

torch.nn.MSELoss(size_average=None, reduce=None, reduction=‘mean’)

在这里插入图片描述

import torch.nn as nn
# 实例化
criterion1 = nn.MSELoss(reduction='mean')
criterion2 = nn.MSELoss(reduction="sum")
output = torch.tensor([1, 2, 3],dtype=torch.float32)
target = torch.tensor([1, 2, 5],dtype=torch.float32)
# 平均值损失值
loss = criterion1(output, target)
print(loss)  # 输出:tensor(1.3333)
# 误差和
loss1 = criterion2(output,target)
print(loss1) # tensor(4.)
tensor(1.3333)
tensor(4.)

交叉熵损失 CrossEntropyLoss

torch.nn.CrossEntropyLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction='mean',label_smoothing=0.0)

当你有一个不平衡的训练集时,这是特别有用的
在这里插入图片描述

import torch
import torch.nn as nn

# 设置三分类问题,假设是人的概率是0.1,狗的概率是0.2,猫的概率是0.3
x = torch.tensor([0.1, 0.2, 0.3])
print(x)
y = torch.tensor([1]) # 设目标标签为1,即0.2狗对应的标签,目标标签张量y
x = torch.reshape(x, (1, 3))  # tensor([[0.1000, 0.2000, 0.3000]]),批次大小为1,分类数3,即为3分类
print(x)
print(y)
# 实例化对象
loss_cross = nn.CrossEntropyLoss()
# 计算结果
result_cross = loss_cross(x, y)
print(result_cross)
tensor([0.1000, 0.2000, 0.3000])
tensor([[0.1000, 0.2000, 0.3000]])
tensor([1])
tensor(1.1019)
import torch
import torchvision
from torch.utils.data import DataLoader

# 准备数据集
dataset = torchvision.datasets.CIFAR10(root="dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 数据集加载器
dataloader = DataLoader(dataset, batch_size=1)
"""
输入图像是3通道的32×32的,
先后经过卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
拉直、
全连接层的处理,
最后输出的大小为10
"""

# 搭建神经网络
class BS(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(in_channels=3,
                      out_channels=32,
                      kernel_size=5,
                      stride=1,
                      padding=2),  #stride和padding计算得到
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32,
                      out_channels=32,
                      kernel_size=5,
                      stride=1,
                      padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32,
                      out_channels=64,
                      kernel_size=5,
                      padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Flatten(),  #变为64*4*4=1024
            nn.Linear(in_features=1024, out_features=64),
            nn.Linear(in_features=64, out_features=10),
        )

    def forward(self, x):
        x = self.model(x)
        return x


# 实例化
bs = BS()
loss = torch.nn.CrossEntropyLoss()
# 对每一张图片进行CrossEntropyLoss损失函数计算
# 使用损失函数loss计算预测结果和目标标签之间的交叉熵损失

for inputs,labels in dataloader:
    outputs = bs(inputs)
    result = loss(outputs,labels)
    print(result)


tensor(2.3497, grad_fn=<NllLossBackward0>)
tensor(2.2470, grad_fn=<NllLossBackward0>)
tensor(2.2408, grad_fn=<NllLossBackward0>)
tensor(2.2437, grad_fn=<NllLossBackward0>)
tensor(2.3121, grad_fn=<NllLossBackward0>)
........

优化器

优化器(Optimizer)是用于更新神经网络参数的工具

它根据计算得到的损失函数的梯度来调整模型的参数,以最小化损失函数并改善模型的性能

在这里插入图片描述
常见的优化器包括:SGD、Adam

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

model.parameters()用于获取模型的可学习参数

learning rate,lr表示学习率,即每次参数更新的步长

在每个训练批次中,需要执行以下操作:

  1. 输入训练数据到模型中,进行前向传播

  2. 根据损失函数计算损失

  3. 调用优化器的zero_grad()方法清零之前的梯度

  4. 调用backward()方法进行反向传播,计算梯度

  5. 调用优化器的step()方法更新模型参数

伪代码如下(运行不了的)

import torch
import torch.optim as optim

# Step 1: 定义模型
model = ...
# Step 2: 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Step 3: 定义损失函数
criterion = ...
# Step 4: 训练循环
for inputs, labels in dataloader:
    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = criterion(outputs, labels)

    # 清零梯度
    optimizer.zero_grad()

    # 反向传播,得到梯度
    loss.backward()

    # 更新参数,根据梯度就行优化
    optimizer.step()

在上述模型代码中,SGD作为优化器,lr为0.01。同时根据具体任务选择适合的损失函数,例如torch.nn.CrossEntropyLoss、torch.nn.MSELoss等,以CIFRA10为例

import torch
import torch.optim as optim
import torchvision
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10(root="dataset", train=False, transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)
class BS(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(in_channels=3,
                      out_channels=32,
                      kernel_size=5,
                      stride=1,
                      padding=2),  #stride和padding计算得到
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32,
                      out_channels=32,
                      kernel_size=5,
                      stride=1,
                      padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32,
                      out_channels=64,
                      kernel_size=5,
                      padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Flatten(),  #变为64*4*4=1024
            nn.Linear(in_features=1024, out_features=64),
            nn.Linear(in_features=64, out_features=10),
        )

    def forward(self, x):
        x = self.model(x)
        return x


model = BS()  #定义model
optimizer = optim.SGD(model.parameters(), lr=0.01)  #定义优化器SGD
criterion = nn.CrossEntropyLoss()  #定义损失函数,交叉熵损失函数

'''循环一次,只对数据就行了一轮的学习'''
for inputs, labels in dataloader:
    # 前向传播
    outputs = model(inputs)
    # 计算损失
    loss = criterion(outputs, labels)
    # 清零梯度
    optimizer.zero_grad()
    # 反向传播
    loss.backward()
    # 更新参数
    optimizer.step()
    # 打印经过优化器后的结果
    print(loss)
    
"""训练循环20次"""
# for epoch in range(20):
#     running_loss = 0.0
#     for inputs, labels in dataloader:
#         # 前向传播
#         outputs = model(inputs)
#         # 计算损失
#         loss = criterion(outputs,labels)
#         # 清零梯度
#         optimizer.zero_grad()
#         # 反向传播
#         loss.backward()
#         # 更新参数
#         optimizer.step()
#         # 打印经过优化器后的结果
#         running_loss = running_loss + loss
#     print(running_loss)
Files already downloaded and verified
tensor(2.3942, grad_fn=<NllLossBackward0>)
tensor(2.2891, grad_fn=<NllLossBackward0>)
tensor(2.2345, grad_fn=<NllLossBackward0>)
tensor(2.2888, grad_fn=<NllLossBackward0>)
tensor(2.2786, grad_fn=<NllLossBackward0>)
........

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/135266.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[html] 动态炫彩渐变背景

废话不多说&#xff0c;直接上源码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>ZXW-NUDT: 动态炫…

交叉编译 openssl

要在 x86 平台上编译适用于 aarch64 架构的 OpenSSL 动态库&#xff0c;你需要使用交叉编译工具链。可以按照以下步骤进行&#xff1a; 安装 aarch64 交叉编译工具链&#xff1a; $ sudo apt-get install gcc-aarch64-linux-gnu g-aarch64-linux-gnu 这将安装 aarch64 交叉编…

大力说运营:如何战胜每日的头疼难题?

小美是一名微信公众号运营专员&#xff0c;近几个月来&#xff0c;每当想到去上班&#xff0c;她就感到全身无力&#xff0c;焦虑烦躁。 原来老板要求小美每天都发一篇推文&#xff0c;而且选题要有吸引力&#xff0c;经过这几个月的苦肝&#xff0c;小美感觉身体被掏空&#x…

【免费送书】蒙古包头旅游和美食推荐

【点我-这里送书】 本人详解 作者&#xff1a;王文峰&#xff0c;参加过 CSDN 2020年度博客之星&#xff0c;《Java王大师王天师》 公众号&#xff1a;JAVA开发王大师&#xff0c;专注于天道酬勤的 Java 开发问题中国国学、传统文化和代码爱好者的程序人生&#xff0c;期待你的…

JLink edu mini 10Pin接口定义

注意&#xff1a;SWD接口在阵脚2&#xff0c;4&#xff1b;而20Pin的SWD接口在阵脚7&#xff0c;9 参考&#xff1a;1 官网资料&#xff1b; 2 【润石RS0104YQ Demo开发板测试分享】J-Link EDU Mini调试5V系统_国产运算放大器_模拟开关_线性稳压器_电平转换器_小逻辑_比较器…

头歌答案HTML——基础

目录 HTML——基础 第1关&#xff1a;初识HTML&#xff1a;简单的Hello World网页制作 任务描述 第2关&#xff1a;HTML结构&#xff1a;自我简介网页 任务描述 HTML——基本标签 第1关&#xff1a;创建第一个 HTML 标签 任务描述 第2关&#xff1a;创建 任务描述 …

社会公益服务小程序的作用是什么

公益包含的项目比较广&#xff0c;包括助学、环保、关爱特殊群体等&#xff0c;市场中无论相关机构还是团队&#xff0c;都有不少&#xff0c;而在实际运作中&#xff0c;也有些一些难题&#xff1a; 首先就是信息展示方面&#xff0c;自身服务及案例难以展示&#xff0c;线上…

「题解」反转链表 返回中间节点

文章目录 &#x1f349;题目1&#xff1a;反转链表&#x1f349;解析&#x1f34c;解法一&#xff1a;创建一个新链表&#x1f34c;解法二&#xff1a;直接操作原链表 &#x1f349;题目2&#xff1a;返回中间节点&#x1f34c;解法一&#xff1a;快慢指针&#x1f34c;解法二&…

通过 Elasticsearch 和 Go 使用混合搜索进行地鼠狩猎

作者&#xff1a;CARLY RICHMOND&#xff0c;LAURENT SAINT-FLIX 就像动物和编程语言一样&#xff0c;搜索也经历了不同实践的演变&#xff0c;很难在其中做出选择。 在本系列的最后一篇博客中&#xff0c;Carly Richmond 和 Laurent Saint-Flix 将关键字搜索和向量搜索结合起…

中国建设银行转账模拟器,工商农业邮政中国招商假的回执单,易语言轻松实现

用易语言的选择夹画板黑月透明标签编辑框实现了一个假的转账模拟器&#xff0c;当然我还是加了水印的&#xff0c;这个图片你也用不了&#xff0c;只能是学习研究一下源码的实现逻辑&#xff0c;知道画板是怎么对编辑框输入的内容做出反应的&#xff0c;然后是如何获取画板上面…

C++进阶-STL set/multiset容器和map容器的简单认识

set/multiset容器的简单认识 set基本概念set与multiset 的区别&#xff1a;set容器的构造和赋值set容器的大小和交换set容器的插入与删除set容器的查找和统计set容器-set和multiset的区别set容器内置类型指定排序规则set容器自定义数据类型指定排序规则 pair对组创建map容器的基…

数据拟合、参数估计、插值等数据处理算法

介绍 数据拟合&#xff1a; 数据拟合是通过选择或构建合适的函数模型&#xff0c;将给定的数据点与该函数模型进行匹配和拟合的过程。常见的数据拟合方法包括最小二乘法和非线性最小二乘法。最小二乘法通过最小化实际数据与拟合函数的残差平方和来求解最优拟合参数。非线性最小…

在AutoDL云环境上训练Stable Diffusion Lora模型

AutoDL官网&#xff1a; AutoDL算力云 | 弹性、好用、省钱。租GPU就上AutoDLAutoDL为您提供专业的GPU租用服务&#xff0c;秒级计费、稳定好用&#xff0c;高规格机房&#xff0c;7x24小时服务。更有算法复现社区&#xff0c;一键复现算法。https://www.autodl.com/ 新建实例…

2023最新最全【Adobe After Effection 2023】下载安装零基础教程【附安装包】

AE2023下载点这里 教学 1.鼠标右击【Ae2023(64bit)】压缩包选择&#xff08;win11系统需先点击“显示更多选项”&#xff09;【解压到 Ae2023(64bit)】。 2.打开解压后的文件夹&#xff0c;鼠标右击【Set-up】选择【以管理员身份运行】。 3.点击【文件夹图标】&#xff0c;…

【数据结构】:红黑树

1、红黑树的简介 红黑树&#xff08;Red Black Tree&#xff09; 是一种自平衡二叉查找树&#xff0c;是在计算机科学中用到的一种数据结构。 红黑树是在1972年由Rudolf Bayer发明的&#xff0c;当时被称为平衡二叉B树&#xff08;symmetric binary B-trees&#xff09;。后来…

基于LDA主题分析的《老友记》情景喜剧数据集的建模分析(文末送书)

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

进程状态和优先级

文章目录 进程状态Linux中具体的进程状态僵尸进程孤儿进程 进程优先级 正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的 人工智能学习网站&#xff0c; 通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。 点击跳转到网站。 进程状态 进程在操…

图解算法数据结构-LeetBook-数组03_除本身之外乘积

为了深入了解这些生物群体的生态特征&#xff0c;你们进行了大量的实地观察和数据采集。数组 arrayA 记录了各个生物群体数量数据&#xff0c;其中 arrayA[i] 表示第 i 个生物群体的数量。请返回一个数组 arrayB&#xff0c;该数组为基于数组 arrayA 中的数据计算得出的结果&am…

AI驱动的软件测试,何时可以信赖?

综合编译&#xff5c;TesterHome社区 作者&#xff5c;Yuliya Vasilko&#xff0c;数据工程师 以下为作者观点&#xff1a; 越来越多的组织转向人工智能&#xff08;AI&#xff09;驱动的测试解决方案&#xff0c;以简化质量保证流程并提高软件可靠性。 随着对人工智能的依赖程…

动态规划题解

文章目录 杨辉三角杨辉三角2爬楼梯最小花费爬楼梯斐波那契数列比特位计数不同路径 杨辉三角 var generate function(numRows) {//先定义一个空数组var ret[];//遍历行数for(let i 0;i<numRows;i){var cownew Array(i1).fill(1)//定义行内数组数&#xff0c;有多少numrows&a…