GPT模型支持下的Python-GEE遥感云大数据分析、管理与可视化技术应用

随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。由此,遥感数据的空间、时间、光谱分辨率不断提高,数据量也大幅增长,使其越来越具有大数据特征。对于相关研究而言,遥感大数据的出现为其提供了前所未有的机遇,但同时也提出了巨大的挑战。传统的工作站和服务器已经无法满足大区域、多尺度海量遥感数据处理的需要。

为解决这一问题,国内外涌现了许多全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台如谷歌Earth Engine(GEE)、航天宏图的PIE Engine和阿里的AI Earth等。其中,Earth Engine最为强大,能够存取和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星图像和NCEP等气象再分析数据集,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。目前,Earth Engine上包含超过900个公共数据集,每月新增约2 PB数据,总容量超过80PB。与传统的处理影像工具(例如ENVI)相比,Earth Engine在处理海量遥感数据方面具有不可比拟的优势。一方面,它提供了丰富的计算资源;另一方面,其巨大的云存储能力节省了科研人员大量的数据下载和预处理时间。可以说,Earth Engine在遥感数据的计算和分析可视化方面代表世界该领域最前沿水平,是遥感领域的一次革命。

  如今,Earth Engine凭借其强大的功能正受到越来越多国内外科技工作者的关注,应用范围也在不断扩大。本课程致力于帮助科研工作者掌握Earth Engine的实际应用能力,以Python编程语言为基础,结合实例讲解平台搭建、影像数据分析、经典应用案例、本地与云端数据管理,以及云端数据论文出版级可视化等方面的进阶技能。



点击查看原文

第一章、理论基础

1、Earth Engine平台及应用、主要数据资源介绍

2、Earth Engine遥感云重要概念、数据类型与对象等

3、JavaScript与Python遥感云编程比较与选择

4、Python基础(语法、数据类型与程序控制结构、函数及类与对象等)

5、常用Python软件包((pandas、numpy、os等)介绍及基本功能演示(Excel/csv数据文件读取与数据处理、目录操作等)

6、JavaScript和Python遥感云API差异,学习方法及资源推荐

7、ChatGPT、文心一言等AI自然语言模型介绍及其遥感领域中的应用

第二章、开发环境搭建

1、本地端与云端Python遥感云开发环境介绍

2、本地端开发环境搭建

1)Anaconda安装,pip/conda软件包安装方法和虚拟环境创建等;

2)earthengine-api、geemap等必备软件包安装;

3)遥感云本地端授权管理;

4)Jupyter Notebook/Visual Studio Code安装及运行调试。 

3、云端Colab开发环境搭建

4、geemap介绍及常用功能演示

5、ChatGPT、文心一言帐号申请与主要功能演示,如遥感知识解答、数据分析处理代码生成、方案框架咨询等。

第三章、遥感大数据处理基础与ChatGPT等AI模型交互

1、遥感云平台影像数据分析处理流程介绍:介绍遥感云平台影像数据分析处理流程的基本框架,包括数据获取、数据预处理、算法开发、可视化等。

2、要素和影像等对象显示和属性字段探索:介绍如何在遥感云平台上显示和探索要素和影像等对象的属性字段,包括如何选择要素和影像对象、查看属性信息、筛选数据等。

3、影像/要素集的时间、空间和属性过滤方法:介绍如何对影像/要素集进行时间、空间和属性过滤,包括如何选择时间段、地理区域和属性条件,以实现更精确的数据分析。

4、波段运算、条件运算、植被指数计算、裁剪和镶嵌等:介绍如何在遥感云平台上进行波段运算、条件运算、植被指数计算、裁剪和镶嵌等操作,以实现更深入的数据分析。

5、Landsat/Sentinel-2等常用光学影像去云:介绍如何在遥感云平台上使用不同方法去除Landsat/Sentinel-2等常用光学影像中的云,以提高影像数据质量。

6、影像与要素集的迭代循环:介绍如何使用遥感云平台的迭代循环功能对影像和要素集进行批量处理,以提高数据分析效率。

7、影像数据整合(Reducer):介绍如何使用遥感云平台的Reducer功能将多个影像数据整合成一个数据集,以方便后续数据分析。

8、邻域分析与空间统计:介绍如何在遥感云平台上进行邻域分析和空间统计,以获取更深入的空间信息。

9、常见错误与代码优化:介绍遥感云平台数据分析过程中常见的错误和如何进行代码优化,以提高数据分析效率和精度。

10、Python遥感云数据分析专属包构建:介绍如何使用Python在遥感云平台上构建数据分析专属包,以方便多次使用和分享分析代码。

第四章、典型案例操作实践

11、机器学习分类算法案例:本案例联合Landsat等长时间序列影像和机器学习算法展示国家尺度的基本遥感分类过程。具体内容包括研究区影像统计、空间分层随机抽样、样本随机切分、时间序列影像预处理和合成、机器学习算法应用、分类后处理和精度评估等方面。

12、决策树森林分类算法案例:本案例联合L波段雷达和Landsat光学时间序列影像,使用决策树分类算法提取指定地区2007-2020年度森林分布图,并与JAXA年度森林产品进行空间比较。案例涉及多源数据联合使用、决策树分类算法构建、阈值动态优化、分类结果空间分析等方面。

13、洪涝灾害监测案例:本案例基于Sentinel-1 C波段雷达等影像,对省级尺度的特大暴雨灾害进行监测。案例内容包括Sentinel-1 C影像处理、多种水体识别算法构建、影像差异分析以及结果可视化等方面。。

14、干旱遥感监测案例:本案例使用40年历史的卫星遥感降雨数据产品如CHIRPS来监测省级尺度的特大干旱情况。案例内容包括气象数据基本处理、年和月尺度数据整合、长期平均值LPA/偏差计算,以及数据结果可视化等方面。

15、物候特征分析案例:本案例基于Landsat和MODIS等时间序列影像,通过植被指数变化分析典型地表植被多年的物候差异(样点尺度)和大尺度(如中国)的物候空间变化特征。案例内容包括时间序列影像合成、影像平滑(Smoothing)与间隙填充(Gap-filling)、结果可视化等方面。

16、森林植被健康状态监测案例:本案例利用20年的MODIS植被指数,对选定区域的森林进行长期监测,并分析森林植被的绿化或褐变情况。涉及影像的连接和合成、趋势分析、空间统计以及可视化等方法。

17、生态环境质量动态监测案例:该案例使用RSEI遥感生态指数和Landsat系列影像,对选定城市的生态状况进行快速监测。主要涉及的技术包括植被指数的计算、地表温度的提取、数据的归一化、主成分PCA分析、RSEI生态指数的构建以及结果的可视化等。

第五章、输入输出及数据资产高效管理

1. 本地数据与云端交互:介绍如何将本地端csv、kml、矢量和栅格数据与云端数据相互转换,并讲解数据导出的方法。

2. 服务器端数据批量下载:包括直接本地下载、影像集批量下载,以及如何快速下载大尺度和长时间序列数据产品,例如全球森林产品和20年的MODIS数据产品等。。

3. 本地端数据上传与属性设置:包括earthengine命令使用,介绍如何上传少量本地端矢量与栅格数据并设置属性(小文件),以及如何批量上传数据并自动设置属性,还将介绍如何使用快速上传技巧上传超大影像文件,例如国产高分影像。

4、个人数据资产管理:介绍如何使用Python和earthengine命令行来管理个人数据资产,包括创建、删除、移动、重命名等操作,同时还会讲解如何批量取消上传/下载任务。

第六章、云端数据论文出版级可视化

1. Python可视化及主要软件包简介:介绍matplotlib和seaborn可视化程序包,讲解基本图形概念、图形构成以及快速绘制常用图形等内容。

2. 研究区地形及样地分布图绘制:结合本地或云端矢量文件、云端地形数据等,绘制研究区示意图。涉及绘图流程、中文显示、配色美化等内容,还会介绍cpt-city精美调色板palette在线下载与本地端应用等。

3. 研究区域影像覆盖统计和绘图:对指定区域的Landsat和Sentinel等系列影像的覆盖数量、无云影像覆盖情况进行统计,绘制区域影像统计图或像元级无云影像覆盖专题图。

4. 样本光谱特征与物候特征等分析绘图:快速绘制不同类型样地的光谱和物候特征,动态下载并整合样点过去30年缩略图(thumbnails)和植被指数时间序列等。

5. 分类结果专题图绘制及时空动态延时摄影Timelapse制作:单幅或多幅分类专题图绘制及配色美化,制作土地利用变化清晰的Timelapse,还会介绍动画文字添加等内容。

6、分类结果面积统计与绘图:基于云端的分类结果和矢量边界文件,统计不同区域不同地类面积,提取统计结果,以不同图形展示统计面积;制作土地利用变化统计绘图等。

点击查看原文

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/13430.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

服务型企业如何使用飞项实现项目化管理?

服务型企业的业务模式一般都是按项目来运作的,其业务分为售前,售中和售后三个阶段,分别由不同部门和人员对客户进行个性化服务。在这个过程中需要对人、流程和知识的高效统筹管理,即项目的整体管理,因此存在着不小的挑…

git lfs简易使用教程

参考资料: https://zzz.buzz/zh/2016/04/19/the-guide-to-git-lfs/ 这篇随笔简单记录一下git lfs的使用教程,只记录最为常用的部分,并阐述原理,方便后面查阅。 首先说明一下git lfs的原理,看名称:git lfs。…

算法:(力扣)(牛客)打印螺旋矩阵题

手撕螺旋矩阵 题目思路解题 题目 描述:给定一个m x n大小的矩阵(m行,n列),按螺旋的顺序返回矩阵中的所有元素。数据范围:0 \le n,m \le 100≤n,m≤10,矩阵中任意元素都满足 |val| \le 100∣val…

如何优化语音交友app开发的搜索和匹配算法

语音交友app开发的挑战 在当今社交媒体行业中,语音交友app开发已经成为一个热门的领域。越来越多的人开始使用语音交友app来寻找新的朋友,这也为开发者们带来了许多机会。然而,这个领域也面临着一些挑战。其中一个最大的挑战是如何优化搜索和…

全志v851s uart3 设置成普通串口收发

本文转载自:https://bbs.aw-ol.com/topic/3281/ 由于UART0 被设定为系统dubug 输出(简单来说就是将ttyS0 设定为console),所以使用UART3 作为普通的串口,进行与别的设备通信。 1. 查看硬件电路图SCH_Schematic1_2022…

springboot 接口防刷(根据IP与路径限制)

接口防刷 一、全局接口防刷(通过拦截器方式)1、原理 代码示例 二、个别接口防刷(接口注解方式)1、代码示例 一、全局接口防刷(通过拦截器方式) 1、原理 代码示例 通过ip地址uri拼接用以作为访问者访问接口区分通过…

Vivado中VIO IP核的使用

Vivado中VIO IP核的使用 一、写在前面二、VIO IP核配置三、VIO联调四、写在后面 一、写在前面 Vivado中的VIO(Virtual Input/Output) IP核是一种用于调试和测试FPGA设计的IP核。它允许设计者通过使用JTAG接口读取和写入FPGA内部的寄存器,从而…

复旦大学郁喆隽:网络制造出人的“幻象”,深度思考如何可能?

“人是什么?”这是亘古以来人们反复追问的一个古老命题。从元宇宙到ChatGPT,这个人人都在讨论、理解和实践互联网的时代,对“人”的自我定义和认知产生了哪些影响?    在3月12日复旦大学-华盛顿大学EMBA项目主办的“复调艺文沙龙”上&am…

Keil生成.bin文件

1. 打开OptionsforTarget 对话框: 2 选择User: 3. 根据User页的配置还要配置Output页面,具体如下: 4. 点击OK确定,然后再重新编译则会按照上图中的配置路径生成.bin格式的文件了: Keil自带的fromelf.exe工具…

Python3 OpenCV4 计算机视觉学习手册:6~11

原文:Learning OpenCV 4 Computer Vision with Python 3 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 计算机视觉 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 当别人说你没有底线的时候&a…

Git 时间线管理

Git 时间线管理 这一部分主要讲的是 取消(undo) 变化 和在不同的时间锚点跳来跳去,以 command 为主。 设计到的commits有: checkoutrestoreresetrevert checkout checkout 的一部分作用,即切换分枝在 git 分支操作 中有提到过&#xff0…

【SCI电气】考虑不同充电需求的电动汽车有序充电调度方法(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

从单兵作战到生态共创,纵目科技打响智驾2.0新战役

4月18日,第十二届上海国际汽车工业展览会(简称:2023上海车展)在上海国家会展中心盛大启幕。纵目科技携最新自动驾驶解决方案——Amphiman 3000、8000行泊一体解决方案、Trinity 3000、8000舱行泊一体解决方案以及众多摄像头产品强…

V2.4版本商超标签专用路由器

PICK_Router_V2.4 产品参数 产品型号 PICK_Router_V2.4 尺寸(mm) 21*14*4.3mm 工作温度 -10-70℃ 产品重量 465g 供电方式 DC12V or POE 工作频率 2.4G 通信速率 50-250kbps 通信方式 10/100Mbps有线网络&2.4G 通信半径 30m 支持标签数量 >10000…

opengl绘制三角形

1.绘制两个三角形 GLfloat vertices1[] { 0.5f, 0.5f, 0.0f, 0.5f, -0.5f, 0.0f, -0.5f, 0.5f, 0.0f } GLfloat vertices2[] { 0.5f, -0.5f, 0.0f, -0.5f, 0.5f, 0.0f, -0.5f, -0.5f, 0.0f } 也可以用索引的方式: GLfloat vertices[] { 0.5f, 0.5f, 0…

浅谈数字化工厂五大核心系统

一、什么是数字化工厂 数字化工厂是将数字技术应用于工厂生产、管理和运营中的一种方式,可以帮助企业提高生产效率和质量,降低成本和风险,提高竞争力和市场份额。数字化工厂是中小制造业企业自主建设制造业信息化的途径。 简道云数字化工厂解…

电脑开机出现英文字母开不了机U盘重装系统教学

电脑开机出现英文字母开不了机U盘重装系统教学。有用户电脑开机之后出现了错误代码字母,无法正常的开机了。遇到这个问题要怎么去进行系统的重新安装呢?一起来看看以下的具体解决方法教学吧。 准备工作: 1、U盘一个(尽量使用8G以上…

WiFi 时钟

WiFi 时钟有很多开源项目的。但是,成品往往代码一大篇,看起来有些上头。加上有些库和环境的版本变迁,编译报错排查起来很是费劲。于是从头捋一遍,一步一步的过程,容易上手: 准备工作: a 零件&…

【天梯赛补题】

175对我这种蒟蒻好难,,, L1-6剪切粘贴 题目详情 - L1-094 剪切粘贴 (pintia.cn) 天梯赛:L1-094 剪切粘贴_scarecrow133的博客-CSDN博客 本蒟蒻看到字符串就害怕,一看就没思路,果断跳过了…… 等佬佬讲…

《面试1v1》java注解

我是 javapub,一名 Markdown 程序员从👨‍💻,八股文种子选手。 面试官:接下来,聊聊Java的注解,它们到底有什么用? 候选人: 注解的用处主要三个: 第一个,编译期使用。比如Override确保你正确重…