基于CST的电磁感应透明设计与机制研究

前言

电磁感应透明(EIT)最早在量子力学中提出,但是量子系统实验条件十分苛刻且费用较高,超材料的出现对电磁感应透明的研究提供了一种新的方法。利用超材料单元结构设计灵活,通过排列不同结构可以实现操控电磁波而且能够在常温下实现类 EIT 效应,极大地降低了量子系统中 EIT 效应的苛刻实验条件,吸引了广大研究人员的兴趣与研究。EIT 超表面的窄带、高效透射窗口可用作滤波器和光开关器件。依据 Kramers-Kronig 关系,吸收频谱的强烈色散效应将导致折射率的剧烈变化,因此 EIT 透明窗口频率处的群折射率增加并导致群速度降低,利用该效应可将 EIT 介质制作为慢光器件。同时,EIT超表面对于一些特殊物质的灵敏度较高,也可以只作为超表面传感器。

单元结构设计

这里为了方便起见,采用最简单的EIT结构(CW和SSR耦合)为例,模型如下:

本文的设计频段为0.4-0.8THz频段,入射光偏振方向为y方向。仿真结构如下:

电场和表面电流分析

从上图可知,EIT的产生频率为0.627THz附近。EIT处的电场和表面电流图分布如下:

从图中可以看出,SSR的电场强度和表面电流强度均大于CW结构上的强度,通过单独仿真CW和SSR可以得到其单独响应的对应谱线,在y极化方向上,CW被激发,SSR不能被激发,但由于两个结构有耦合因此可以产生EIT现象。

拟合计算

基于EIT是由于两个结构耦合产生,可以利用耦合模方程对仿真谱线进行计算验证,计算结果如下:

通过调整超表面单元的结构参数,我们可以实现不同频率段下的EIT结构设计,同时也可以通过耦合模方程对其的产生机制进行研究和理论计算。

最后,有相关需要欢迎通过公众号“320科技工作室”与我们联系

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/132775.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Arduino到底适不适合做产品

文章目录 一、Arduino性能很低,不如树莓派等开发板,所以不要用Arduino做开发二、Arduino程序效率很低,所以不要用Arduino做开发三、Arduino只能开发玩具,不能做产品四、Arduino开发板成本太高,不适合做产品总结个人见解…

【图像分类】【深度学习】【Pytorch版本】 GoogLeNet(InceptionV2)模型算法详解

【图像分类】【深度学习】【Pytorch版本】 GoogLeNet(InceptionV2)模型算法详解 文章目录 【图像分类】【深度学习】【Pytorch版本】 GoogLeNet(InceptionV2)模型算法详解前言GoogLeNet(InceptionV2)讲解Batch Normalization公式InceptionV2结构InceptionV2特殊结构GoogLeNet(I…

[量化投资-学习笔记011]Python+TDengine从零开始搭建量化分析平台-MACD金死叉策略回测

在上一章节 MACD金死叉中结束了如何根据 MACD 金死叉计算交易信号。 目录 脚本说明文档(DevChat 生成)MACD 分析脚本安装依赖库参数配置查询与解析数据计算 MACD 指标判断金叉和死叉计算收益绘制图形运行脚本 本次将根据交易信号,模拟交易。更…

《数字图像处理-OpenCV/Python》连载(41)图像的旋转

《数字图像处理-OpenCV/Python》连载(41)图像的旋转 本书京东优惠购书链接:https://item.jd.com/14098452.html 本书CSDN独家连载专栏:https://blog.csdn.net/youcans/category_12418787.html 第 6 章 图像的几何变换 几何变换分…

数据分析实战 | 贝叶斯分类算法——病例自动诊断分析

目录 一、数据及分析对象 二、目的及分析任务 三、方法及工具 四、数据读入 五、数据理解 六、数据准备 七、模型训练 八、模型评价 九、模型调参 十、模型预测 一、数据及分析对象 CSV文件——“bc_data.csv” 数据集链接:https://download.csdn.net/d…

RocketMQ(一):基本概念和环境搭建

Spring源码系列文章 RocketMQ(一):基本概念和环境搭建 目录 一、RocketMQ简介二、各个MQ产品的比较三、RocketMQ重要概念1、基本概念2、消息从发送到被消费的的流程3、生产和消费理解 四、RocketMQ安装1、下载RocketMQ2、解压并配置环境变量3、修改nameServer的运行…

微软和Red Hat合体:帮助企业更方便部署容器

早在2015年,微软就已经和Red Hat达成合作共同为企业市场开发基于云端的解决方案。时隔两年双方在企业市场的多个方面开展更紧密的合作,今天两家公司再次宣布帮助企业更方便地部署容器。 双方所开展的合作包括在微软Azure上部署Red Hat OpenShift&#xf…

学习c#的第四天

目录 C# 变量 C# 中的变量定义与初始化 接受来自用户的值 C# 中的 Lvalues 和 Rvalues 不同类型变量进行运算 静态变量 局部变量 C# 常量 整数常量 浮点常量 字符常量 字符串常量 定义常量 扩展知识 Convert.ToDouble 与 Double.Parse 的区别 静态常量和动态常…

Vue中的常用指令v-html / v-show / v-if / v-else / v-on / v-bind / v-for / v-model

前言 持续学习总结输出中,Vue中的常用指令v-html / v-show / v-if / v-else / v-on / v-bind / v-for / v-model 概念:指令(Directives)是Vue提供的带有 v- 前缀 的特殊标签属性。可以提高操作 DOM 的效率。 vue 中的指令按照不…

Hadoop入门——数据分析基本步骤

文章目录 1.概述2.分析步骤2.1第一步 明确分析目的和思路2.2第二步 数据收集2.3第三步 数据处理2.4第四步 数据分析2.5第五步 数据展现2.6第六步 报告撰写 3.总结 1.概述 2.分析步骤 2.1第一步 明确分析目的和思路 2.2第二步 数据收集 2.3第三步 数据处理 2.4第四步 数据分析 …

Java Web——HTTP协议

目录 1. HTTP协议概述 1.1. HTTP数据传输格式 1.2. HTTP协议特点 2. HTTP 1.0和HTTP 1.1 3. HTTP请求协议 3.1. GET方式请求协议 3.2. POST方式请求协议 3.3. GET请求和POST请求的区别 4. HTTP相应协议 4.1. 响应状态码 如果两个国家进行会晤需要遵守一定的礼节。所以…

ConcurrentHashMap详解

要避免 HashMap 的线程安全问题,有多个解决方法,比如改用 HashTable 或者 Collections.synchronizedMap() 方法。 但是这两者都有一个问题,就是性能,无论读还是写,他们两个都会给整个集合加锁,导致同一时间…

顺序图——画法详解

百度百科的定义: 顺序图是将交互关系表示为一个二维图。纵向是时间轴,时间沿竖线向下延伸。横向轴代表了在协作中各独立对象的类元角色。类元角色用生命线表示。当对象存在时,角色用一条虚线表示,当对象的过程处于激活状态时&…

逐步学习 Swagger enum:从入门到精通

enum 是 Swagger 规范中用来定义枚举类型的一种方式。它允许开发者在 API 文档中明确列出该接口的参数、返回值或请求体中可接受的枚举值。通过使用 Swagger enum,开发者可以更清晰地描述 API 的输入和输出,提高 API 文档的可读性和可维护性。 enum 使用…

ROS 多级tf坐标转换

题目 现有一移动机器人,该机器人的基坐标系为“base_link”,机器人包含3个子坐标系分别为“joint1”,“joint2”,“joint3”。 要求:利用多坐标转换,实现joint1下的坐标向joint2下的坐标转换,…

YOLOv8-seg改进:复现HIC-YOLOv5,HIC-YOLOv8-seg助力小目标分割

🚀🚀🚀本文改进:HIC-YOLOv8-seg:1)添加一个针对小物体的额外预测头,以提供更高分辨率的特征图2)在backbone和neck之间采用involution block来增加特征图的通道信息;3)在主干网末端加入 CBAM 的注意力机制; 🚀🚀🚀HIC-YOLOv8-seg小目标分割检测&复杂场景…

find和grep命令的简单使用

find和grep命令的简单使用 一、find例子--不同条件查找 二、grep正则表达式的简单说明例子--简单文本查找例子--结合管道进行查找 一、find find 命令在指定的目录下查找对应的文件。 find [path] [expression]● path 是要查找的目录路径,可以是一个目录或文件名…

Vue3-组合式API下的父传子和子传父

组合式API下的父传子 基本思想: 1.父组件中给子组件绑定组件 2.子组件内部通过props选项接收 const propsdefineProps({属性名:类型}) 由于script上写了setup,所以无法直接配置props选项,所以需要借助于“编译器宏”函数接收传递的数据 …

GPT4 Turbo 究竟更新了什么

GPT4 Turbo 究竟更新了什么 记忆力和上下文理解能力增强 现在的GPT4可以理解128K的文本,相当于几百页的内容,你的GPT4再也不会忘记你之前说的什么了,换句话说之前他只能记住一篇文章,而现在可以记住一整本书的内容了 API降价 输入…

基于FANUC工业机器人的坐标系转换、多视角拼接与三维重建

0.简介 总体任务:机械臂末端安装三维相机,绕着工件进行拍摄,并在计算机中将每次拍摄的点云合并在同一个坐标系下,从而获得更加完整全面的点云。机械臂:FANAUC相机:梅卡曼德技术方案:使用相机外…