时序预测 | MATLAB实现WOA-CNN-BiGRU-Attention时间序列预测(SE注意力机制)

时序预测 | MATLAB实现WOA-CNN-BiGRU-Attention时间序列预测(SE注意力机制)

目录

    • 时序预测 | MATLAB实现WOA-CNN-BiGRU-Attention时间序列预测(SE注意力机制)
      • 预测效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
2
3
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.MATLAB实现WOA-CNN-BiGRU-Attention时间序列预测(SE注意力机制),鲸鱼优化卷积双向门控循环单元注意力时间序列预测;
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,单变量时间序列预测,
main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;
5.鲸鱼算法优化学习率,隐藏层节点,正则化系数;

模型描述

注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现WOA-CNN-BiGRU-Attention时间序列预测(SE注意力机制)
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)

fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);

[Best_score,Best_pos,curve]=WOA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数
 
%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [
    sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图
    reluLayer("Name", "relu_1")                                          % Relu 激活层

lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层
    flattenLayer("Name", "flatten")                                  % 网络铺平层
       fullyConnectedLayer(num_class, "Name", "fc")                                      % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 
                                                                     % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/132578.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ElasticSearch知识点

什么是ElasticSearch ElasticSearch: 智能搜索,分布式的搜索引擎,是ELK的一个非常完善的产品,ELK代表的是: E就是ElasticSearch,L就是Logstach,K就是kibana Elasticsearch是一个建立在全文搜索引擎 Apache Lucene基础…

Docker配置Nginx反向代理

文章目录 1.部署微程序到docker中1.1 dockerfile文件1.2 依据自定义的dockerfile文件创建docker镜像1.3 创建容器1.4 测试 2.在docker中安装Nginx2.1 安装Nginx镜像2.2 获取Nginx配置文件并将其同步到宿主电脑指定位置中安装nginx容器删除nginx容器 2.3 安装Nginx容器并数据挂载…

【技术支持】DevTools中重写覆盖源js文件

sources面板下,左侧overrides标签下添加一个文件夹,并同意。 勾选Enable Local overrides 然后在page标签下,修改文件后ctrls保存 直接就保存在overrides的文件夹下了 或者文件上右键Override content

中低收入群体能在“双十一”购物狂欢吗?

今天这个“双十一”购物狂欢节,在各大网站的报道的确蜂拥而上,显得很有点儿“狂欢”的景象,可读罢内容却听到哀鸿遍野。 笔者仅只接力“腾迅新闻”和“今日头条”几小时前分别发表的《 双11十五年,价格战还能打多久?》…

面向萌新的技术博客入门指南

Python之禅 在Python的解释器中隐藏一个彩蛋,输入import this就会返回19条Python之禅,具体如下: import this The Zen of Python, by Tim Peters Python之禅 ,by Tim Peters Beautiful is better than ugly. 优美好于丑陋&…

FTP、NFS、SAMBA系统服务一

一、rsync托管xinetd 1、为什么要进行服务托管 独立服务:独立启动脚本 ssh ftp nfs dns ... 依赖服务: 没有独立的启动脚本 rsync telnet 依赖xinetd服务(独立服务) 2、如何将rsync托管给xinetd服务去管理? 第一步&#xff1…

飞机社交软件开发:重新定义社交媒体的空中交互体验

【导语】 随着互联网技术的快速发展,社交媒体平台的界限也逐渐模糊。飞机社交软件应运而生,打破传统的地面社交模式,为空中旅行的旅客提供全新的交流平台。本文将从市场需求、技术实现、用户体验和未来发展等方面,深入探讨飞机社交…

推荐几个宝藏app

立冬后,真尼玛冷,哎!记得多穿点衣服呀,老铁们!! GKD 去广告神器 下载网址:https://github.com/gkd-kit/gkd 特性: 它不仅支持跳过开屏广告,还支持跳过弹窗广告等&#xf…

【启扬方案】启扬安卓屏一体机在医疗自助服务终端上的应用解决方案

为了解决传统医疗模式下的“看病难、看病慢”等问题,提高医疗品质、效率与效益,自助服务业务的推广成为智慧医疗领域实现信息化建设、高效运作的重要环节。 医疗自助服务终端是智慧医疗应用场景中最常见的智能设备之一,它通过与医院信息化系统…

CentOS7安装Xrdp以便Windows远程桌面连接

Centos7已经安装了桌面环境,想要Windows系统远程连接到桌面。 1,which vncserver 如果返回no vncserver,则需要安装 2,yum -y install tigervnc* 3,安装Xrdp yum install epel* -y yum --enablerepoepel -y install xrdp 4…

LoadRunner使用动态链接库技术

什么是动态库? 动态库一般又叫动态链接库英文为DLL,是Dynamic Link Library 的缩写形式,DLL是一个包含可由多个程序同时使用的代码和数据的库,DLL不是可执行文件。动态链接提供了一种方法,使进程可以调用不属于其可执行…

SQL必知会(二)-SQL查询篇(4)-高级过滤

第5课、高级过滤 组合 WHERE 子句 AND OR:与条件、或条件 多个 WHERE 子句有两种使用方式:AND 子句 或 OR 子句。 1)AND 操作符 AND 相当于编程语言中的与条件。 需求:如果某个产品由供应商 DLL01 制造,但价格不高…

MySQL时间类型注意事项

MySQL常见的时间类型有YEAR、DATE、TIME、DATETIME、TIMESTAMP,绝大多数业务都是精确到秒的,所以通常用后两种。并且MySQL5.6以后后两种支持精度到毫秒(最多小数点后6位) DATETIME占8字节,不论要不要毫秒 TIMESTAMP占4…

抖音短视频账号矩阵系统、短视频矩阵源码+无人直播源码开发可打包

抖音短视频账号矩阵系统、短视频矩阵源码无人直播源码开发可打包 矩阵系统源码主要有三种框架:Spring、Struts和Hibernate。Spring框架是一个全栈式的Java应用程序开发框架,提供了IOC容器、AOP、事务管理等功能。Struts框架是一个MVC架构的Web应用程序框…

数据库数据恢复—无备份,未开启binlog的MySQL误删除怎么恢复数据

数据库数据恢复环境: 一台本地windows sever操作系统服务器,服务器上部署mysql数据库单实例,引擎类型为innodb,表内数据存储所使用表空间类型为独立表空间。无数据库备份,未开启binlog。 数据库故障&分析&#xf…

计算机服务器中了mallox勒索病毒怎么解决,勒索病毒解密,数据恢复

企业的计算机服务器为企业的数据存储提供了极大便利,也让企业的生产运行效率得到了极大提升,但是网络数据安全威胁随着技术的不断发展也不断增加。近期,云天数据恢复中心接到很多企业的求助,企业的计算机服务器遭到了mallox勒索病…

Easyui DataGrid combobox联动下拉框内容

发票信息下拉框联动,更具不同的发票类型,显示不同的税率 专票 普票 下拉框选择事件 function onSelectType(rec){//选中值if (rec2){//普通发票对应税率pmsPlanList.pmsInvoiceTaxRatepmsPlanList.pmsInvoiceTaxRateT}else {//专用发票对应税率pmsPlan…

SQL必知会(二)-SQL查询篇(6)-创建计算字段

第7课、创建计算字段 1)拼接字段 需求:检索Vendors 表包含供应商的名称和地址的所有信息,返回结果需要把地址括号起来。 SELECT vend_name ( vend_country ) FROM Vendors ORDER BY vend_name;-- 以下例子与上面例子相同工作 SELECT ve…

YOLOv8-Seg改进:分割注意力系列篇 | 高效的通道先验卷积注意力(CPCA) | 中科院 2023.6

🚀🚀🚀本文改进:高效的通道先验卷积注意力(CPCA)方法,支持注意力权重在通道和空间维度上的动态分布; 🚀🚀🚀CPCA 小目标分割检测&复杂场景首选,实现涨点 🚀🚀🚀YOLOv8-seg创新专栏:http://t.csdnimg.cn/KLSdv 学姐带你学习YOLOv8,从入门到创新…

SmargGBD(GB28181设备接入模块)如何对接wvp-gb28181-pro

技术背景 我们在对接SmartGBD(GB28181设备接入模块)的时候,除了常规的海康大华宇视等国标平台外,有些公司会选择wvp-gb28181-pro。 众所周知,WEB VIDEO PLATFORM是一个基于GB28181-2016标准实现的开箱即用的网络视频…