Azure 机器学习 - 有关为 Azure 机器学习配置 Kubernetes 群集的参考

目录

    • 受支持的 Kubernetes 版本和区域
    • 建议的资源计划
    • ARO 或 OCP 群集的先决条件
      • 禁用安全增强型 Linux (SELinux)
      • ARO 和 OCP 的特权设置
    • 收集的日志详细信息
    • Azure 机器学习作业与自定义数据存储连接
    • 支持的 Azure 机器学习排斥和容许
      • 最佳实践
    • 通过 HTTP 或 HTTPS 将其他入口控制器与 Azure 机器学习扩展集成
      • 先决条件
      • 通过 HTTP 公开服务
      • 通过 HTTPS 公开服务
    • 使用 ARM 模板部署扩展
    • AzuremML 扩展发行说明

本文包含有关[使用 Azure 机器学习配置 Kubernetes]的参考信息。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

受支持的 Kubernetes 版本和区域

  • 安装 Azure 机器学习扩展的 Kubernetes 群集的版本支持窗口为“N-2”,这与 Azure Kubernetes 服务 (AKS) 版本支持策略一致,其中“N”是 Azure Kubernetes 的最新 GA 次要版本服务。

    • 例如,如果 AKS 今天发布了 1.20.a,则 1.20.a、1.20.b、1.19.c、1.19.d、1.18.e 和 1.18.f 均受支持。

    • 如果客户在运行不受支持的 Kubernetes 版本,则在请求群集支持时,系统会要求他们升级。 运行不受支持的 Kubernetes 版本的群集未涵盖在 Azure 机器学习扩展支持策略中。

  • Azure 机器学习扩展区域可用性:

    • Azure 机器学习扩展可以部署到已启用 Azure Arc 的 Kubernetes 区域支持中列出的受支持区域中的 AKS 或已启用 Azure Arc 的 Kubernetes。

建议的资源计划

部署 Azure 机器学习扩展时,某些相关服务将部署到适用于 Azure 机器学习的 Kubernetes 群集。 群集中“相关服务及其资源使用情况”如下表所示:

部署/Daemonset副本 #培训推理CPU 请求(m)CPU 限制(m)内存请求(Mi)内存限制(Mi)
metrics-controller-manager11010020300
prometheus-operator1100400128512
prometheus110010005124096
kube-state-metrics11010032256
gateway1505002562048
fluent-bit每个节点 1 个10200100300
inference-operator-controller-manager1空值10010001281024
amlarc-identity-controller1空值20010002001024
amlarc-identity-proxy1空值20010002001024
azureml-ingress-nginx-controller1空值100100064512
azureml-fe-v21(出于测试目的)

3(用于生产目的) | | 空值 | 900 | 2000 | 800 | 1200 |
| online-deployment | 每个部署 1 个 | User-created | 空值 | | | | |
| online-deployment/identity-sidecar | 每个部署 1 个 | | 空值 | 10 | 50 | 100 | 100 |
| aml-operator | 1 | 不适用 | | 20 | 1020 | 124 | 2168 |
| volcano-admission | 1 | 不适用 | | 10 | 100 | 64 | 256 |
| volcano-controller | 1 | 不适用 | | 50 | 500 | 128 | 512 |
| volcano-schedular | 1 | 不适用 | | 50 | 500 | 128 | 512 |

除你自己的部署/Pod 外,“总最低系统资源要求”如下:

场景已启用推理已启用训练CPU 请求(m)CPU 限制(m)内存请求(Mi)内存限制(Mi)节点计数推荐的最低 VM 大小相应的 AKS VM SKU
测试空值178083002440122961 个节点2 个 vCPU、7 GiB 内存、6400 IOPS 和 1500Mbps BWDS2v2
测试空值41044201492109601 个节点2 个 vCPU、7 GiB 内存、6400 IOPS 和 1500Mbps BWDS2v2
测试1910104202884157441 个节点4 个 vCPU、14 GiB 内存、12800 IOPS 和 1500Mbps BWDS3v2
生产空值3600127004240152963 个节点4 个 vCPU、14 GiB 内存、12800 IOPS 和 1500Mbps BWDS3v2
生产空值41044201492109601 个节点8 个 vCPU、28GiB 内存、25600 IOP、6000Mbps BWDS4v2
生产3730148204684187443 个节点4 个 vCPU、14 GiB 内存、12800 IOPS 和 1500Mbps BWDS4v2

ARO 或 OCP 群集的先决条件

禁用安全增强型 Linux (SELinux)

启用了 SELinux 的计算机不支持 Azure 机器学习数据集(用于 Azure 机器学习训练作业的 SDK v1 功能)。 因此,需要对所有辅助角色禁用 selinux 才能使用 Azure 机器学习数据集。

ARO 和 OCP 的特权设置

对于 ARO 或 OCP 群集上的 Azure 机器学习扩展部署,授予对 Azure 机器学习服务帐户的特权访问,运行 oc edit scc privileged 命令,并在“users:”下添加以下服务帐户:

  • system:serviceaccount:azure-arc:azure-arc-kube-aad-proxy-sa
  • system:serviceaccount:azureml:{EXTENSION-NAME}-kube-state-metrics
  • system:serviceaccount:azureml:prom-admission
  • system:serviceaccount:azureml:default
  • system:serviceaccount:azureml:prom-operator
  • system:serviceaccount:azureml:load-amlarc-selinux-policy-sa
  • system:serviceaccount:azureml:azureml-fe-v2
  • system:serviceaccount:azureml:prom-prometheus
  • system:serviceaccount:{KUBERNETES-COMPUTE-NAMESPACE}:default
  • system:serviceaccount:azureml:azureml-ingress-nginx
  • system:serviceaccount:azureml:azureml-ingress-nginx-admission

备注

  • {EXTENSION-NAME}:它是由 az k8s-extension create --name CLI 命令指定的扩展名。
  • {KUBERNETES-COMPUTE-NAMESPACE}:它是将计算附加到 Azure 机器学习工作区时指定的 Kubernetes 计算的命名空间。 如果 KUBERNETES-COMPUTE-NAMESPACEdefault,则跳过配置 system:serviceaccount:{KUBERNETES-COMPUTE-NAMESPACE}:default

收集的日志详细信息

关于群集中 Azure 机器学习工作负载的某些日志将通过扩展组件(例如状态、指标、生命周期等)收集。以下列表显示了收集的所有日志详细信息,包括收集的日志类型以及它们发送到或存储的位置。

Pod资源说明详细日志信息
amlarc-identity-controller通过托管标识请求和续订 Azure Blob/Azure 容器注册表令牌。仅在安装扩展时设置了 enableInference=true 时使用。 它包含有关获取终结点标识以使用 Azure 机器学习服务进行身份验证的状态的跟踪日志。
amlarc-identity-proxy通过托管标识请求和续订 Azure Blob/Azure 容器注册表令牌。仅在安装扩展时设置了 enableInference=true 时使用。 它包含有关获取群集标识以使用 Azure 机器学习服务进行身份验证的状态的跟踪日志。
aml-operator管理训练作业的生命周期。日志包含群集中的 Azure 机器学习训练作业 Pod 状态。
azureml-fe-v2用于将传入推理请求路由到已部署服务的前端组件。请求级别的访问日志,包括请求 ID、开始时间、响应代码、错误详细信息和请求延迟的持续时间。 用于服务元数据更改、服务运行状态等的跟踪日志,用于调试目的。
gateway网关用于来回通信和发送数据。有关从 Azure 机器学习服务到群集的请求的跟踪日志。
运行状况检查日志包含 azureml 命名空间资源(Azure 机器学习扩展)状态,以诊断导致扩展无法运行的原因。
inference-operator-controller-manager管理推理终结点的生命周期。日志包含群集中的 Azure 机器学习推理终结点和部署 Pod 状态。
metrics-controller-manager管理 Prometheus 的配置。有关上传训练作业状态的跟踪日志,以及有关 CPU 利用率和内存利用率的推理部署指标。
中继服务器中继服务器仅在连接 Arc 的群集中是必需的,并且不会安装在 AKS 群集中。中继服务器与 Azure 中继配合使用,以便与云服务通信。 日志包含来自 Azure 中继的请求级别信息。

Azure 机器学习作业与自定义数据存储连接

永久性卷 (PV) 和永久性卷声明 (PVC) 是 Kubernetes 概念,允许用户提供和使用各种存储资源。

  1. 创建 PV,以 NFS 为例,
apiVersion: v1
kind: PersistentVolume
metadata:
  name: nfs-pv 
spec:
  capacity:
    storage: 1Gi 
  accessModes:
    - ReadWriteMany 
  persistentVolumeReclaimPolicy: Retain
  storageClassName: ""
  nfs: 
    path: /share/nfs
    server: 20.98.110.84 
    readOnly: false
  1. 使用 ML 工作负载在同一 Kubernetes 命名空间中创建 PVC。 在 metadata 中,必须添加标签 ml.azure.com/pvc: "true" 以供 Azure 机器学习识别,并添加注释 ml.azure.com/mountpath: <mount path> 以设置装载路径。
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: nfs-pvc  
  namespace: default
  labels:
    ml.azure.com/pvc: "true"
  annotations:
    ml.azure.com/mountpath: "/mnt/nfs"
spec:
  storageClassName: ""
  accessModes:
  - ReadWriteMany      
  resources:
     requests:
       storage: 1Gi

重要

  • 只有命令作业/组件、hyperdrive 作业/组件和批处理部署支持来自 PVC 的自定义数据存储。 > * 实时联机终结点、AutoML 作业和 PRS 作业不支持来自 PVC 的自定义数据存储。
  • 此外,只有与 PVC 位于同一 Kubernetes 命名空间中的 Pod 才会装载到卷上。 数据科学家能够访问作业中 PVC 批注中指定的 mount path。 AutoML 作业和 Prs 作业将无法访问 PVC。

支持的 Azure 机器学习排斥和容许

污点和容忍是 Kubernetes 中的概念,它们协同工作,以确保不会将 Pod 安排到不适当的节点。

与 Azure 机器学习(包括 AKS 和 Arc Kubernetes 群集)集成的 Kubernetes 群集现在支持特定的 Azure 机器学习排斥和容许,允许用户在 Azure 机器学习专用节点上添加特定的 Azure 机器学习排斥,以防止非 Azure 机器学习工作负载安排到这些专用节点上。

我们仅支持在节点上放置 amlarc 特定的排斥,定义如下:

排斥密钥效果说明
amlarc 整体ml.azure.com/amlarctrueNoScheduleNoExecutePreferNoSchedule所有 Azure 机器学习工作负载(包括扩展系统服务 Pod 和机器学习工作负载 Pod)都会容忍此 amlarc overall 污点。
amlarc 系统ml.azure.com/amlarc-systemtrueNoScheduleNoExecutePreferNoSchedule只有 Azure 机器学习扩展系统服务 Pod 才会容忍此 amlarc system 污点。
amlarc 工作负载ml.azure.com/amlarc-workloadtrueNoScheduleNoExecutePreferNoSchedule只有机器学习工作负载 Pod 才容许此 amlarc workload 排斥。
amlarc 资源组ml.azure.com/resource-group<资源组名称>NoScheduleNoExecutePreferNoSchedule只有从特定资源组创建的机器学习工作负载 Pod 才容许此 amlarc resource group 排斥。
amlarc 工作区ml.azure.com/workspace<工作区名称>NoScheduleNoExecutePreferNoSchedule只有从特定工作区创建的机器学习工作负载 Pod 才容许此 amlarc workspace 排斥。
amlarc 计算ml.azure.com/compute<计算名称>NoScheduleNoExecutePreferNoSchedule只有使用特定计算目标创建的机器学习工作负载 Pod 才容许此 amlarc compute 排斥。

提示

  1. 对于Azure Kubernetes 服务 (AKS),可以遵循有关 Azure Kubernetes 服务 (AKS) 中的高级计划程序功能的最佳做法中的示例,将污点应用到节点池。
  2. 对于 Arc Kubernetes 群集(例如本地 Kubernetes 群集),可以使用 kubectl taint 命令向节点添加污点。 有关更多示例,请参阅 Kubernetes 文档。

最佳实践

根据 Azure 机器学习专用节点的计划要求,可以添加“多个特定于 amlarc 的污点”,以限制 Azure 机器学习工作负载可在节点上运行的内容。 我们列出了有关使用 amlarc 排斥的最佳做法:

  • 若要防止非 Azure 机器学习工作负载在 Azure 机器学习专用节点/节点池上运行,只需向这些节点添加 aml overall 污点即可。
  • 要防止非系统 Pod 在 Azure 机器学习专用节点/节点池上运行,必须添加以下污点:
    • amlarc overall 排斥
    • amlarc system 排斥
  • 要防止非 ml 工作负载在 Azure 机器学习专用节点/节点池上运行,必须添加以下污点:
    • amlarc overall 排斥
    • amlarc workloads 排斥
  • 要防止不是从工作区 X 创建的工作负载在 Azure 机器学习专用节点/节点池上运行,必须添加以下污点:
    • amlarc overall 排斥
    • amlarc resource group (has this <workspace X>) 排斥
    • amlarc <workspace X> 排斥
  • 要防止不是由计算目标 X 创建的工作负载在 Azure 机器学习专用节点/节点池上运行,必须添加以下污点:
    • amlarc overall 排斥
    • amlarc resource group (has this <workspace X>) 排斥
    • amlarc workspace (has this <compute X>) 排斥
    • amlarc <compute X> 排斥

通过 HTTP 或 HTTPS 将其他入口控制器与 Azure 机器学习扩展集成

除了默认的 Azure 机器学习推理负载均衡器 azureml-fe 外,还可以通过 HTTP 或 HTTPS 将其他负载均衡器与 Azure 机器学习扩展集成。

本教程介绍如何集成 Nginx 入口控制器或 Azure 应用程序网关。

先决条件

  • 使用 inferenceRouterServiceType=ClusterIPallowInsecureConnections=True部署 Azure 机器学习扩展,以便 Nginx 入口控制器可以自行处理 TLS 终止,而不是当通过 HTTPS 公开服务时将其移交给 azureml-fe。
  • 若要与 Nginx 入口控制器集成,需要使用 Nginx 入口控制器设置 Kubernetes 群集。
    • 创建基本控制器:如果是从头开始,请参阅这些说明。
  • 若要与 Azure 应用程序网关集成,需要使用 Azure 应用程序网关入口控制器设置 Kubernetes 群集。
    • 绿地部署:如果是从头开始,请参阅这些说明。
    • 棕地部署:如果有现有的 AKS 群集和应用程序网关,请参阅这些说明。
  • 若要在此应用程序上使用 HTTPS,则需 x509 证书及其私钥。

通过 HTTP 公开服务

为了公开 azureml-fe,我们将使用以下入口资源:

# Nginx Ingress Controller example
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: azureml-fe
  namespace: azureml
spec:
  ingressClassName: nginx
  rules:
  - http:
      paths:
      - path: /
        backend:
          service:
            name: azureml-fe
            port:
              number: 80
        pathType: Prefix

此入口会将 azureml-fe 服务和所选部署作为 Nginx 入口控制器的默认后端公开。

# Azure Application Gateway example
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: azureml-fe
  namespace: azureml
spec:
  ingressClassName: azure-application-gateway
  rules:
  - http:
      paths:
      - path: /
        backend:
          service:
            name: azureml-fe
            port:
              number: 80
        pathType: Prefix

此入口会将 azureml-fe 服务和所选部署作为应用程序网关的默认后端公开。

请将以上入口资源另存为 ing-azureml-fe.yaml

  1. 通过运行以下命令部署 ing-azureml-fe.yaml

    kubectl apply -f ing-azureml-fe.yaml
    
  2. 检查入口控制器的日志以了解部署状态。

  3. azureml-fe 应用程序现在应该可用。 可以通过访问以下位置进行检查:

    • Nginx 入口控制器:Nginx 入口控制器的公共 LoadBalancer 地址
    • Azure 应用程序网关:应用程序网关的公共地址。
  4. 创建推理作业并调用。

    备注

    调用前,将 scoring_uri 中的 IP 替换为 Nginx 入口控制器的公共 LoadBalancer 地址。

通过 HTTPS 公开服务

  1. 在部署入口之前,需创建 Kubernetes 机密来托管证书和私钥。 可通过运行以下命令来创建 Kubernetes 机密

    kubectl create secret tls <ingress-secret-name> -n azureml --key <path-to-key> --cert <path-to-cert>
    
  2. 定义以下入口。 在入口的 secretName 节中指定机密的名称。

    # Nginx Ingress Controller example
    apiVersion: networking.k8s.io/v1
    kind: Ingress
    metadata:
      name: azureml-fe
      namespace: azureml
    spec:
      ingressClassName: nginx
      tls:
      - hosts:
        - <domain>
        secretName: <ingress-secret-name>
      rules:
      - host: <domain>
        http:
          paths:
          - path: /
            backend:
              service:
                name: azureml-fe
                port:
                  number: 80
            pathType: Prefix
    
    # Azure Application Gateway example
    apiVersion: networking.k8s.io/v1
    kind: Ingress
    metadata:
      name: azureml-fe
      namespace: azureml
    spec:
      ingressClassName: azure-application-gateway
      tls:
      - hosts:
        - <domain>
        secretName: <ingress-secret-name>
      rules:
      - host: <domain>
        http:
          paths:
          - path: /
            backend:
              service:
                name: azureml-fe
                port:
                  number: 80
            pathType: Prefix
    

    备注

    将上述入口资源中的 <domain><ingress-secret-name> 替换为指向 Nginx 入口控制器/应用程序网关的 LoadBalancer 的域和你的机密名称。 将以上入口资源存储在名为 ing-azureml-fe-tls.yaml 的文件中。

  3. 通过运行部署 ing-azureml-fe-tls.yaml

    kubectl apply -f ing-azureml-fe-tls.yaml
    
  4. 检查入口控制器的日志以了解部署状态。

  5. 现在,azureml-fe 应用程序在 HTTPS 上可用。 可以通过访问 Nginx 入口控制器的公共 LoadBalancer 地址来检查这一点。

  6. 创建推理作业并调用。

    备注

    调用前,将 scoring_uri 中的协议和 IP 替换为指向 Nginx 入口控制器或应用程序网关的 LoadBalancer 的 https 和域。

使用 ARM 模板部署扩展

可以使用 ARM 模板部署托管群集上的扩展。 可从 deployextension.json 中找到示例模板,其中包含演示参数文件 deployextension.parameters.json

若要使用示例部署模板,请使用正确的值编辑参数文件,然后运行以下命令:

az deployment group create --name <ARM deployment name> --resource-group <resource group name> --template-file deployextension.json --parameters deployextension.parameters.json

有关如何使用 ARM 模板的详细信息,请参阅 ARM 模板文档

AzuremML 扩展发行说明

Date版本版本说明
2023 年 10 月 11 日1.1.35修复易受攻击的映像。 bug 修复。
2023 年 8 月 25 日1.1.34修复易受攻击的映像。 返回更详细的标识错误。 bug 修复。
2023 年 7 月 18 日1.1.29添加新标识运算符错误。 bug 修复。
2023 年 6 月 4 日1.1.28改进自动缩放程序以处理多个节点池。 bug 修复。
2023 年 4 月 18 日1.1.26Bug 修复和漏洞修复。
2023 年 3 月 27 日1.1.25添加 Azure 机器学习作业限制。 SSH 设置失败时,训练作业会快速失败。 将 Prometheus 抓取间隔缩短到 30 秒。 改进用于推理的错误消息。 修复易受攻击的映像。
2023 年 3 月 7 日1.1.23更改默认实例类型以使用 2Gi 内存。 更新 scoring-fe 的指标配置,其中添加 15 秒的 scrape_interval。 为 mdc 挎斗添加资源规范。 修复易受攻击的映像。 bug 修复。
2023 年 2 月 14 日1.1.21Bug 修复。
2023 年 2 月 7 日1.1.19改进用于推理的错误返回消息。 更新默认实例类型以使用 2Gi 内存限制。 对 Pod 运行状况、资源配额、Kubernetes 版本和扩展版本执行群集运行状况检查。 Bug 修复
2022 年 12 月 27 日1.1.17将 Fluent-bit 从 DaemonSet 移至挎斗。 添加 MDC 支持。 优化错误消息。 支持群集模式(windows、linux)作业。 Bug 修复
2022 年 11 月 29 日1.1.16通过新的 CRD 添加实例类型验证。 支持容错。 缩短 SVC 名称。 工作负载核心小时数。 多个 bug 修复和改进。
2022 年 9 月 13 日1.1.10Bug 修复。
2022 年 8 月 29 日1.1.9改进了运行状况检查逻辑。 Bug 修复。
2022 年 6 月 23 日1.1.6Bug 修复。
2022 年 6 月 15 日1.1.5更新了训练,以使用新的公共运行时运行作业。 删除了 AKS 扩展的 Azure 中继使用情况。 从扩展中删除了服务总线使用情况。 更新了安全上下文使用情况。 已将推理 azureml-fe 更新为 v2。 已更新为使用 Volcano 作为训练作业计划程序。 Bug 修复。
2021 年 10 月 14 日1.0.37在 AMLArc 训练作业中支持 PV/PVC 卷装载。
2021 年 9 月 16 日1.0.29新区域可用:美国西部、美国中部、美国中北部、韩国中部。 作业队列可扩展性。 请参阅“Azure 机器学习工作区工作室”中的作业队列详细信息。 自动终止策略。 支持 ScriptRunConfig 中的 max_run_duration_seconds。 如果运行时间超过设置值,系统会尝试自动取消运行。 群集自动缩放支持的性能改进。 从本地容器注册表部署 Arc 代理和 ML 扩展。
2021 年 8 月 24 日1.0.28作业 YAML 支持计算实例类型。 将托管标识分配给 AMLArc 计算。
2021 年 8 月 10 日1.0.20新的 Kubernetes 分发支持,K3S - 轻型 Kubernetes。 将 Azure 机器学习扩展部署到 AKS 群集,而无需通过 Azure Arc 进行连接。自动化机器学习 (AutoML) 需要通过 Python SDK。 使用 2.0 CLI 将 Kubernetes 群集附加到 Azure 机器学习工作区。 优化 Azure 机器学习扩展组件 CPU/内存资源利用率。
2021 年 7 月 2 日1.0.13新的 Kubernetes 分发支持、OpenShift Kubernetes 和 GKE(Google Kubernetes 引擎)。 自动缩放支持。 如果用户管理的 Kubernetes 群集启用了自动缩放,则群集将根据活动运行和部署的量自动横向扩展或缩减。 作业启动器的性能改进,大大缩短了作业执行时间。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/130219.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring -Spring之依赖注入源码解析(下)--实践(流程图)

IOC依赖注入流程图 注入的顺序及优先级&#xff1a;type-->Qualifier-->Primary-->PriOriry-->name

缓存与数据库双写一致性几种策略分析

一、背景 在高并发场景中&#xff0c;为防止大量请求直接访问数据库&#xff0c;缓解数据库压力&#xff0c;常用的方式一般会增加缓存层起到缓冲作用&#xff0c;减少数据库压力。引入缓存&#xff0c;就会涉及到缓存与数据库中数据如何保持一致性问题&#xff0c;本文将对几…

HALSTM32通用定时器+EXTI实现单击/双击/长按功能

HALSTM32通用定时器EXTI实现单击/双击/长按功能 ✨在使用USB功率计的时候&#xff0c;发现上面的一个按键实现多画面功能切换&#xff0c;于是探索了一下是如何实现的&#xff0c;将其实现的基本思路以及综合网上收集的相关实现方法&#xff0c;粗陋的整理了一下&#xff0c;将…

【MSF服务】3389远程连接命令扩展

攻击机IP地址&#xff08;kali&#xff09;&#xff1a;192.168.200.14 靶子机IP地址&#xff08;windows 10&#xff09;&#xff1a;192.168.200.81 前提&#xff1a;获取目标主机系统权限之后的操作 远程连接桌面 rdesktop -u username -p password iprdesktop报错 解决…

Azure 机器学习 - 使用自动化机器学习训练计算机视觉模型的数据架构

目录 一、用于训练的数据架构图像分类&#xff08;二进制/多类&#xff09;多标签图像分类对象检测实例分段 二、用于联机评分的数据架构输入格式输出格式图像分类&#xff08;二进制/多类&#xff09;多标签图像分类对象检测实例分段 在线评分和可解释性 (XAI) 的数据格式支持…

8255 boot介绍及bring up经验分享

这篇文章会简单的介绍8255的启动流程&#xff0c;然后着重介绍8255在实际项目中新硬件上的bring up工作&#xff0c;可以给大家做些参考。 8255 boot介绍 下面这些信息来自文档&#xff1a;《QAM8255P IVI Boot and CoreBSP Architecture Technical Overview》 80-42847-11 R…

ChatGPT、GPT-4 Turbo接口调用(stream模式)

接口地址 https://chat.xutongbao.top/api/light/chat/createChatCompletion 请求方式 post 请求参数 model可选值&#xff1a; “gpt-3.5-turbo-1106”、 “gpt-3.5-turbo-16k” 、 “gpt-4”、“gpt-4-1106-preview”。 默认值为&#xff1a; “gpt-3.5-turbo-1106” to…

2023最新electron 进程间通讯的几种方法

数据传递&#xff08;旧&#xff09; 渲染进程发数据到主进程 // 按钮事件 const handleWebRootPathClick () > {ipcRenderer.send(open_dir) }// main.ts中接收 ipcMain.on(open_dir, () > {console.log(recv ok) }) 主进程发数据到渲染进程 // main.ts中发送数据 …

【数据结构初阶】算法的时间复杂度和空间复杂度

各位读者老爷好&#xff01;现在鼠鼠我呀来浅谈一下数据结构初阶中的一个知识点&#xff1a;算法的时间复杂度和空间复杂度&#xff0c;希望对你有所帮助。 在浅谈时间复杂度和空间复杂度之前&#xff0c;咱们可以来了解一下一下几个概念&#xff1a; 1.什么是数据结构 数据结…

nodejs+vue+python+PHP+微信小程序-安卓-软件项目开发管理系统的设计与实现-计算机毕业设计

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

建造者模式 rust和java的实现

文章目录 建造者模式介绍优点缺点使用场景 实现javarust rust代码仓库 建造者模式 建造者模式&#xff08;Builder Pattern&#xff09;使用多个简单的对象一步一步构建成一个复杂的对象。 一个 Builder 类会一步一步构造最终的对象。该 Builder 类是独立于其他对象的。 介绍…

JVM之类加载器

文章目录 版权声明类加载器类加载器的分类启动类加载器拓展类加载器&应用程序类加载器 双亲委派机制解决三个问题 打破双亲委派机制自定义类加载器案例演示线程上下文类加载器案例梳理OSGi模块化 版权声明 本博客的内容基于我个人学习黑马程序员课程的学习笔记整理而成。我…

Angular 由一个bug说起之一:List / Grid的性能问题

在angular中&#xff0c;MatTable构建简单&#xff0c;使用范围广。但某些时候会出现卡顿 卡顿情景&#xff1a; 1&#xff1a;一次性请求太多的数据 2&#xff1a;一次性渲染太多数据&#xff0c;这会花费CPU很多时间 3&#xff1a;行内嵌套复杂的元素 4&#xff1a;使用过多的…

iOS应用加固方案解析:ipa加固安全技术全面评测

​ 在移动应用开发领域&#xff0c;iOS应用的安全性一直备受关注。ipaguard作为一款专业的iOS应用加固方案&#xff0c;采用混淆加密技术&#xff0c;旨在保护应用免受破解、逆向和篡改等风险。本文将深入探讨ipaguard的产品功能、安全技术及其在iOS应用加固领域中的核心优势和…

离线视频ocr识别

sudo apt-get install libleptonica-dev libtesseract-dev sudo apt-get install tesseract-ocr-chi-sim python -m pip install video-ocrwindows安装方法&#xff1a; 下载安装 https://digi.bib.uni-mannheim.de/tesseract/tesseract-ocr-w64-setup-5.3.3.20231005.exe 下…

Python 编码最全梳理

为什么要写这篇文章呢&#xff1f;这里就要提到某一天&#xff0c;工作的时候&#xff0c;突然发现自己在编码方面&#xff0c;一窍不通。实在惭愧 字符编码是计算机技术的基石&#xff0c;对于程序员来说尤其重要&#xff0c;字符编码的知识是必须要懂的 编码入门知识 ASCI…

Spring Boot 集成 ElasticSearch

1 加入依赖 首先创建一个项目&#xff0c;在项目中加入 ES 相关依赖&#xff0c;具体依赖如下所示&#xff1a; <dependency><groupId>org.elasticsearch</groupId><artifactId>elasticsearch</artifactId><version>7.1.0</version&g…

leetcode 62

leetcode 62 题目 解题思路 class Solution { public:int uniquePaths(int m, int n) {vector<vector<int>> f(m, vector<int>(n));for(int i0; i<m; i){f[i][0] 1;}for(int j0; j<n; j){f[0][j] 1;}for(int i1; i<m; i){for(int j1; j<n; j){…

C语言:对于宏的一些概念及技巧

一、前言 宏在C语言中是一段有名称的代码段&#xff0c;在程序编译过程中&#xff0c;会将宏的内容被这段代码进行替换&#xff0c;常常用于定义一些常量、函数、代码块等&#xff0c;由于近年来发现许多公司进行面试时对于宏的面试题尤为多&#xff0c;故本文将对C语言中的宏的…

说说React render方法的原理?在什么时候会被触发?

一、原理 首先&#xff0c;render函数在react中有两种形式&#xff1a; 在类组件中&#xff0c;指的是render方法&#xff1a; class Foo extends React.Component { render() { return <h1> Foo </h1>; } } 在函数组件中&#xff0c;指的是函…