无人机航迹规划:五种最新智能优化算法(COA、SWO、KOA、GRO、LO)求解无人机路径规划MATLAB

一、五种算法(LSO、SWO、KOA、GRO、LO)简介

1、小龙虾优化算法COA

小龙虾优化算法(Crayfsh optimization algorithm,COA)由Jia Heming 等人于2023年提出,该算法模拟小龙虾的避暑、竞争和觅食行为,具有搜索速度快,搜索能力强,能够有效平衡全局搜索和局部搜索的能力。多目标优化算法:基于非支配排序的小龙虾优化算法(NSCOA)MATLAB_IT猿手的博客-CSDN博客

参考文献:

[1] Jia, H., Rao, H., Wen, C. et al. Crayfish optimization algorithm. Artif Intell Rev (2023). Crayfish optimization algorithm | SpringerLink

2、蜘蛛蜂优化算法SWO

蜘蛛蜂优化算法(Spider wasp optimizer,SWO)由Mohamed Abdel-Basset等人于2023年提出,该算法模型雌性蜘蛛蜂的狩猎、筑巢和交配行为,具有搜索速度快,求解精度高的优势。VRPTW(MATLAB):蜘蛛蜂优化算法SWO求解带时间窗的车辆路径问题VRPTW(提供参考文献及MATLAB代码)-CSDN博客

参考文献:

[1]Abdel-Basset, M., Mohamed, R., Jameel, M. et al. Spider wasp optimizer: a novel meta-heuristic optimization algorithm. Artif Intell Rev (2023). Spider wasp optimizer: a novel meta-heuristic optimization algorithm | SpringerLink

3、开普勒优化算法KOA

开普勒优化算法(Kepler optimization algorithm,KOA)由Mohamed Abdel-Basset等人于2023年提出。五种最新优化算法(SWO、ZOA、EVO、KOA、GRO)求解23个基准测试函数(含参考文献及MATLAB代码)_swo算法_IT猿手的博客-CSDN博客

参考文献:

Mohamed Abdel-Basset, Reda Mohamed, Shaimaa A. Abdel Azeem, Mohammed Jameel, Mohamed Abouhawwash, Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary motion, Knowledge-Based Systems, 2023. DOI: Redirecting

4、淘金优化算法GRO

淘金优化算法(Gold rush optimizer,GRO)由Kamran Zolf于2023年提出,其灵感来自淘金热,模拟淘金者进行黄金勘探行为。VRPTW(MATLAB):淘金优化算法GRO求解带时间窗的车辆路径问题VRPTW(提供参考文献及MATLAB代码)-CSDN博客

参考文献:

K. Zolfi. Gold rush optimizer: A new population-based metaheuristic algorithm. Operations Research and Decisions 2023: 33(1), 113-150. DOI 10.37190/ord230108

5、狐猴优化算法

狐猴优化算法(Lemurs Optimizer,LO)由Ammar Kamal Abasi等人于2022年提出,该算法模拟狐猴的跳跃和跳舞行为,具有结构简单,思路新颖,搜索速度快等优势。单目标应用:基于狐猴优化算法(Lemurs Optimizer,LO)的微电网优化调度MATLAB_IT猿手的博客-CSDN博客

参考文献:

[1]Abasi AK, Makhadmeh SN, Al-Betar MA, Alomari OA, Awadallah MA, Alyasseri ZAA, Doush IA, Elnagar A, Alkhammash EH, Hadjouni M. Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization. Applied Sciences. 2022; 12(19):10057. Applied Sciences | Free Full-Text | Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization

二、模型简介

单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客

参考文献:

[1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120

三、COA、SWO、KOA、GRO、LO求解无人机路径规划

(1)部分代码

close all
clear  
clc
warning off;
%% 三维路径规划模型定义
global startPos goalPos N
N=2;%待优化点的个数(可以修改)
startPos = [10, 10, 80]; %起点(可以修改)
goalPos = [80, 90, 150]; %终点(可以修改)
SearchAgents_no=30; % 种群大小(可以修改)
Function_name='F1'; %F1:随机产生地图 F2:导入固定地图
Max_iteration=100; %最大迭代次数(可以修改)
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
AlgorithmName={'COA','SWO','KOA','GRO','LO'};%算法名称
addpath('./AlgorithmCode/')%添加算法路径
bestFit=[];%保存各算法的最优适应度值
for i=1:size(AlgorithmName,2)%遍历每个算法,依次求解当前问题
Algorithm=str2func(AlgorithmName{i});%获取当前算法名称,并将字符转换为函数
[Best_score,Best_pos,Convergence_curve]=Algorithm(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);%当前算法求解
%将当前算法求解结果放入data中
data(i).Best_score=Best_score;%保存该算法的Best_score到data
data(i).Best_pos=Best_pos;%保存该算法的Best_pos到data
data(i).Convergence_curve=Convergence_curve;%保存该算法的Convergence_curve到data
bestFit=[bestFit data(i).Best_score];
end

%%  画各算法的直方图
figure 
bar(bestFit)
ylabel('无人机飞行路径长度');
set(gca,'xtick',1:1:size(AlgorithmName,2));
set(gca,'XTickLabel',AlgorithmName)
saveas(gcf,'./Picture/直方图.jpg') %将图片保存到Picture文件夹下面


%%  画收敛曲线
strColor={'r-','g-','b-','k-','m-','c-','y-'};
figure
for i=1:size(data,2)
plot(data(i).Convergence_curve,strColor{i},'linewidth',1.5)%semilogy
hold on
end
xlabel('迭代次数');
ylabel('无人机飞行路径长度');
legend(AlgorithmName,'Location','Best')
saveas(gcf,'./Picture/收敛曲线.jpg') %将图片保存到Picture文件夹下面


%% 显示三维图并保存
path=plotFigure(data,AlgorithmName,strColor);%path是各算法求解的无人机路径
saveas(gcf,'./Picture/路径曲线(三维).jpg') %将图片保存到Picture文件夹下面


%% 显示二维图并保存
view(2)
saveas(gcf,'./Picture/路径曲线(二维).jpg') %将图片保存到Picture文件夹下面

(2)部分结果

四、完整MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/128946.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据分析实战 | 线性回归——女性身高与体重数据分析

目录 一、数据集及分析对象 二、目的及分析任务 三、方法及工具 四、数据读入 五、数据理解 六、数据准备 七、模型训练 八、模型评价 九、模型调参 十、模型预测 实现回归分析类算法的Python第三方工具包比较常用的有statsmodels、statistics、scikit-learn等&#…

【CASS精品教程】cass 3d基于osgb三维模型生成等高线的两种方法

对于植被、房屋稀少的地方,可以基于osgb模型直接生成等高线。本文讲解在cass11.0 3d中基于osgb三维模型生成等高线的两种方法。 一、加载osgb三维模型 二、生成等高线 1. 绘制等高线 cass11版本提供了绘制单个等高线的功能。 点击【绘制等高线】,提示输入等高距。 输入固定…

MySQL的高阶语句

数据库的权限一般很小,工作中使用最多的场景就是查 排序、分组、子查询、视图、多表连接查询(左连接、右连接、内连接) create TABLE info ( id int(4) primary key, NAME varchar(5) not null, score decimal(5,2), address varchar(20)…

渗透测试必备工具--Metasploit(流程梳理与meterpreter权限分析)

目录 一、攻击前期准备必会的命令(msf流程) 1、启动:msfdb run 或者 msfconsole 2、Payload生成:msfvenom 3、查找相关模块:search 4、选择使用模块:use 5、返回上一层:back 6、查看需要…

猫罐头哪家好?宠物店自用的5款猫罐头推荐!猫咪嘎嘎炫~

亲爱的铲屎官们,你们是否会为猫咪选购猫罐头而感到烦恼?你们是否渴望了解哪些猫罐头在宠物界有着良好的口碑?猫罐头,作为猫咪日常饮食中的重要组成部分,其品质直接影响到猫咪的健康和幸福。 猫罐头哪家好?作…

go 引入包报错“构建约束排除‘D/...vendor/pkg包’”中所有的GO文件

解决方案: 方案一:没生效 go - 构建约束排除所有 Go 文件 - IT工具网 go modules - build constraints exclude all Go files in - Stack Overflow 方案二:生效,手动初始化创建一个目录 后续再研究原因,有明白的大…

边缘智能模型训练、推理的关键技术

目录 模型推理边缘智能模型推理的关键指标延迟(Latency)准确性(Accuracy)能效(Energy)隐私(Privacy)通讯/计算开销(Comm/comp Overhead) 关键技术模型压缩&am…

node插件MongoDB(三)—— 库mongoose 的使用和数据类型(一)

前言 提示:使用mongoose 的前提是你安装了node和 MongoDB。 mongoose 官网文档:http://mongoosejs.net/docs/index.html 文章目录 前言一、安装二、基本使用1. 打开bin目录的mongod.exe文件2. 基本使用的代码(连接mongodb 服务)3.…

LeetCode算法题解(回溯,难点)|LeetCode37. 解数独

LeetCode37. 解数独 题目链接:37. 解数独 题目描述: 编写一个程序,通过填充空格来解决数独问题。 数独的解法需 遵循如下规则: 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线分…

【C++ 学习 ㉟】- 异常详解

目录 一、C 异常处理的基本语法 1.1 - 抛出异常 1.2 - 检测和捕获异常 二、在函数调用链中异常栈展开的匹配原则 三、异常重新抛出 四、异常规范 五、C 标准异常体系 程序的错误大致可以分为以下三种: 语法错误:在编译和链接阶段就能发现&#xf…

<蓝桥杯软件赛>零基础备赛20周--第5周--杂题-2

报名明年4月蓝桥杯软件赛的同学们,如果你是大一零基础,目前懵懂中,不知该怎么办,可以看看本博客系列:备赛20周合集 20周的完整安排请点击:20周计划 每周发1个博客,共20周(读者可以按…

Java,多线程,线程的两种创建方式

首先是多线程的一些相关概念: 相关概念: 程序(program):为完成特定任务,用某种语言编写的一组指令的集合。即指一段静态(指不在执行中)的代码。 进程(process&#xf…

Qt QTableWidget表格的宽度

默认值 QTableWIdget的表格宽度默认是一个给定值,可以手动调整每列的宽度,也不填满父窗口 MainWindow::MainWindow(QWidget *parent): QMainWindow(parent) {this->resize(800,600);QStringList contents{"11","111111111111",&…

聊聊模板引擎<Template engine>

模板引擎是什么 模板引擎是一种用于生成动态内容的工具,通常用于Web开发中。它能够将静态的模板文件和动态数据结合起来,生成最终的HTML、XML或其他文档类型。模板引擎通过向模板文件中插入变量、条件语句、循环结构等控制语句,从而实现根据…

操作系统:输入输出管理(一)系统概述与设备独立性软件

一战成硕 5.1 I/O系统概述5.1.1 I/O设备5.1.2 I/O控制方式5.1.3 I/O软件层次结构5.1.4 应用程序的I/O接口 5.2 设备独立性软件5.2.1 与设备无关的软件5.2.2 高速缓存与缓冲区5.2.3 设备分配与回收5.2.4 spooling技术(假脱机技术) 5.1 I/O系统概述 5.1.1…

一分钟秒懂人工智能对齐

文章目录 1.什么是人工智能对齐2.为什么要研究人工智能对齐3.人工智能对齐的常见方法 1.什么是人工智能对齐 人工智能对齐(AI Alignment)指让人工智能的行为符合人的意图和价值观。 人工智能系统可能会出现“不对齐”(misalign)…

【EI会议征稿】JPCS独立出版-第五届新材料与清洁能源国际学术会议(ICAMCE 2024)

JPCS独立出版-第五届新材料与清洁能源国际学术会议(ICAMCE 2024) 2024 5th International Conference on Advanced Material and Clean Energy 第五届新材料与清洁能源国际学术会议(ICAMCE 2024)将于2024年2月23-25日在中国▪长沙…

电机应用-无刷直流电机

无刷直流电机 无刷直流电机(Brushless Dirent Current Motor,简称BLDCM)由电动机主体和驱动器组成,无电刷和无换向器,是除了有刷电机外用得最多的一种电机。 无刷直流电机不使用机械的电刷装置,采用方波自控…

带你一分钟看懂 “kubernetes”

目录 什么是 Kubernetes Kubernetes 概述 为什么需要 Kubernetes,它能做什么? 什么是 Kubernetes 从官方网站上可以看到,它是一个工业级的容器编排平台。Kubernetes 这个单词是希腊语,它的中文翻译是“舵手”或者“飞行员”。在…

NFT Insider112:Gucci Cosmos LAND亮相 The Sandbox,和YGG一起探索Web3增长新方式

引言:NFT Insider由NFT收藏组织WHALE Members(https://twitter.com/WHALEMembers)、BeepCrypto(https://twitter.com/beep_crypto)联合出品,浓缩每周NFT新闻,为大家带来关于NFT最全面、最新鲜、最有价值的讯息。每期周…