实验九 哈夫曼编码
一、【实验目的】
1、理解哈夫曼树的基本概念
2、掌握哈夫曼树的构造及数据结构设计
3、掌握哈夫曼编码问题设计和实现
二、【实验内容】
1、假设用于通信的电文仅由8个字母 {a, b, c, d, e, f, g, h} 构成,它们在电文中出现的概率分别为{ 0.07, 0.19, 0.02, 0.06, 0.32, 0.03, 0.21, 0.10 },试为这8个字母设计哈夫曼编码。
提示:包含两个过程:
(1)构建哈夫曼树
(2)输出编码。
三、【实验源代码】
#include <iostream>
using namespace std;
#include <cstdio>
#include <cstring>
typedef struct node { //哈夫曼树中单个节点的信息
int parent; //父节点
char letter; //字母
int lchild;
int rchild;
double weight; //权值
}*HuffmanTree;
void Select(HuffmanTree& tree, int n, int& s1, int& s2) { //找到权值最小的两个值的下标,其中s1的权值小于s2的权值
int min = 0;
for (int i = 1; i <= n; i++) {
if (tree[i].parent == 0) {
min = i;
break;
}
}
for (int i = min + 1; i <= n; i++) {
if (tree[i].parent == 0 && tree[i].weight < tree[min].weight)
min = i;
}
s1 = min; //找到第一个最小值,并赋给s1
for (int i = 1; i <= n; i++) {
if (tree[i].parent == 0 && i != s1) {
min = i;
break;
}
}
for (int i = min + 1; i <= n; i++) {
if (tree[i].parent == 0 && i != s1 && tree[i].weight < tree[min].weight)
min = i;
}
s2 = min; //找到第二个最小值,并赋给s2
}
void CreateHuff(HuffmanTree& tree, char* letters, double* weights, int n) {
int m = 2 * n - 1; //若给定n个数要求构建哈夫曼树,则构建出来的哈夫曼树的结点总数为2n-1
tree = (HuffmanTree)calloc(m + 1, sizeof(node)); //开辟空间顺序储存Huffman树,用calloc开辟的空间初始化的值为0(NULL),符合Huffman树初始化条件(parent、weight、lchild、rchild等初始化应为0),由于tree[0]不存数据(因为任何节点的父节点若为0,会与节点初始化0值相混淆,故不存数据),则要开辟(2n-1)+1个空间(额外开辟一个空间)
for (int i = 1; i <= n; i++) { //给节点赋字母及其对应的权值
tree[i].weight = weights[i - 1];
tree[i].letter = letters[i];
}
for (int i = n + 1; i <= m; i++) {
int s1 = 0, s2 = 0;
Select(tree, i - 1, s1, s2); //每次循环选择权值最小的s1和s2,生成它们的父结点
tree[i].weight = tree[s1].weight + tree[s2].weight; //新创建的节点i 的权重是s1和s2的权重之和
tree[i].lchild = s1; //新创建的节点i 的左孩子是s1
tree[i].rchild = s2; //新创建的节点i 的右孩子是s2
tree[s1].parent = i; //s1的父亲是新创建的节点i
tree[s2].parent = i; //s2的父亲是新创建的节点i
}
}
void HuffmanCoding(HuffmanTree& tree, char**& HuffCode, int n) {
HuffCode = (char**)malloc(sizeof(char*) * (n + 1)); //运用char型二级指针,可理解成包含多个char*地址的数组,开n+1个空间,因为下标为0的空间不用
char* tempcode = (char*)malloc(sizeof(char) * n);
tempcode[n - 1] = '\0';
for (int i = 1; i <= n; i++) {
int start = n - 1;
int doing = i; //doing为正在编码的数据节点
int parent = tree[doing].parent; //找到该节点的父结点
while (parent) { //直到父结点为0(NULL),即父结点为根结点时停止
if (tree[parent].lchild == doing) //如果该结点是其父结点的左孩子,则编码为0,否则为1
tempcode[--start] = '0';
else
tempcode[--start] = '1';
doing = parent; //继续往上进行编码
parent = tree[parent].parent;
}
HuffCode[i] = (char*)malloc(sizeof(char) * (n - start)); //开辟用于存储编码的内存空间
strcpy(HuffCode[i], &tempcode[start]); //将编码拷贝到字符指针数组中的相应位置
}
free(tempcode); //释放辅助空间
}
int main() {
int n = 8;
char letters[9] = {' ','a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'};
double weights[9] = {0.07, 0.19, 0.02, 0.06, 0.32, 0.03, 0.21, 0.10};
HuffmanTree tree;
CreateHuff(tree, letters, weights, n); //构建哈夫曼树
char** HuffCode;
HuffmanCoding(tree, HuffCode, n);
for (int i = 1; i <= n; i++)
printf("字母 %c 的哈夫曼编码值是: %s\n", tree[i].letter, HuffCode[i]);
return 0;
}
👨🏫 参考资料