YOLOv5-6.1源码详解之损失函数loss.py

目录

1 目标检测结果精确度的度量

2 YOLOv5-6.1损失函数

2.1 classification类别损失

2.2 confidence置信度损失

2.3  localization定位损失

3 YOLOv5-6.1损失函数loss.py代码解析

3.1 class ComputeLoss

3.1.1 __init__

3.1.2 build_targets

3.1.3 _call__

3.2 smooth_BCE

3.3 BCEBlurWithLogitsLoss

3.4 FocalLoss 

References 


1 目标检测结果精确度的度量

目标检测任务有三个主要目的:

  • 检测出图像中目标的位置,同一张图像中可能存在多个检测目标;
  • 检测出目标的大小,通常为恰好包围目标的矩形框;
  • 对检测到的目标进行识别分类。

所以,判断检测结果精确不精确,主要基于以上三个目的来衡量:

  • 首先我们来定义理想情况:图像中实际存在目标的所有位置,都被检测出来。检测结果越接近这个理想状态,也即漏检/误检的目标越少,则认为结果越精确;
  • 同样定义理想情况:检测到的矩形框恰好能包围检测目标。检测结果越接近这个理想状态,那么认为结果越精确;
  • 对检测到的目标,进行识别与分类,分类结果与目标的实际分类越符合,说明结果越精确。

如下图所示,人、大巴为检测目标,既要检测出所有人和大巴的位置,也要检测出包围人和大巴的最小矩形框,同时还要识别出哪个矩形框内是人,哪个矩形框内是大巴。

2 YOLOv5-6.1损失函数

通过阅读YOLOv5-6.1版本中的loss.py文件可知,YOLOv5的损失函数包括:

  • classification loss 分类损失
  • localization loss 定位损失,预测框和真实框之间的误差
  • confidence loss 置信度损失,框的目标性

三个部分的损失均是通过匹配到的正样本对来计算,每一个输出特征图相互独立,直接相加得到最终每一部分的损失值。先给出整体的计算公式:

2.1 classification类别损失

类别损失与置信度损失类似,通过预测框的类别分数和目标框类别的one-hot表现来计算类别损失,公式如下:

这里目标置信度损失和类别损失使用的是带 sigmoid 的二进制交叉熵函数 BCEWithLogitsLoss。如果要使用 Focal Loss 在其基础上改动即可。 

BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
lcls += self.BCEcls(pi[..., 5:], t_cls)

2.2 confidence置信度损失

目标置信度损失由正样本匹配得到的样本对计算,一是预测框中的目标置信度分数p_{o};二是预测框和与之对应的目标框的 iou 值,其作为 ground-truth。两者计算二进制交叉熵得到最终的目标置信度损失。公式如下:

BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
obji = self.BCEobj(pi[..., 4], tobj)

2.3  localization定位损失

 YOLOv5使用的是CIoU Loss,具体CIoU Loss分析可以参考优化改进YOLOv5算法之添加GIoU、DIoU、CIoU、EIoU、Wise-IoU模块(超详细)_eiou代码-CSDN博客YOLOv5 中正样本匹配策略和bbox回归如下图所示。

iou_term = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True)
lbox += (1.0 - iou_term).mean()

3 YOLOv5-6.1损失函数loss.py代码解析

3.1 class ComputeLoss

3.1.1 __init__

代码和注释如下:

  def __init__(self, model, autobalance=False):
        super(ComputeLoss, self).__init__()
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters
		
		'''
		定义分类损失和置信度损失为带sigmoid的二值交叉熵损失,
		即会先将输入进行sigmoid再计算BinaryCrossEntropyLoss(BCELoss)。
		pos_weight参数是正样本损失的权重参数。
		'''
        # Define criteria
        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
        BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))

		'''
		对标签做平滑,eps=0就代表不做标签平滑,那么默认cp=1,cn=0
        后续对正类别赋值cp,负类别赋值cn
		'''
        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0))  # positive, negative BCE targets
		
		'''
		超参设置g>0则计算FocalLoss
		'''
        # Focal loss
        g = h['fl_gamma']  # focal loss gamma
        if g > 0:
            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
		
		'''
		获取detect层
		'''
        det = model.module.model[-1] if is_parallel(model) else model.model[-1]  # Detect() module
        '''
        每一层预测值所占的权重比,分别代表浅层到深层,小特征到大特征,4.0对应着P3,1.0对应P4,0.4对应P5。
        如果是自己设置的输出不是3层,则返回[4.0, 1.0, 0.25, 0.06, .02],可对应1-5个输出层P3-P7的情况。
        '''
        self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02])  # P3-P7
        '''
        autobalance 默认为 False,yolov5中目前也没有使用 ssi = 0即可
        '''
        self.ssi = list(det.stride).index(16) if autobalance else 0  # stride 16 index
        '''
        赋值各种参数,gr是用来设置IoU的值在objectness loss中做标签的系数, 
        使用代码如下:
		tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype)  # iou ratio
        train.py源码中model.gr=1,也就是说完全使用标签框与预测框的CIoU值来作为该预测框的objectness标签。
        '''
        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
        for k in 'na', 'nc', 'nl', 'anchors':
            setattr(self, k, getattr(det, k))

3.1.2 build_targets

代码和注释如下:

def build_targets(self, p, targets):
        # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
        '''
        na = 3,表示每个预测层anchors的个数
        targets 为一个batch中所有的标签,包括标签所属的image,以及class,x,y,w,h
        targets = [[image1,class1,x1,y1,w1,h1],
        		   [image2,class2,x2,y2,w2,h2],
        		   ...
        		   [imageN,classN,xN,yN,wN,hN]]
        nt为一个batch中所有标签的数量
        '''
        na, nt = self.na, targets.shape[0]  # number of anchors, targets
        tcls, tbox, indices, anch = [], [], [], []
        '''
        gain是为了最终将坐标所属grid坐标限制在坐标系内,不要超出范围,
        其中7是为了对应: image class x y w h ai,
        但后续代码只对x y w h赋值,x,y,w,h = nx,ny,nx,ny,
        nx和ny为当前输出层的grid大小。
        '''
        gain = torch.ones(7, device=targets.device)  # normalized to gridspace gain
        '''
        ai.shape = [na,nt]
        ai = [[0,0,0,.....],
        	  [1,1,1,...],
        	  [2,2,2,...]]
        这么做的目的是为了给targets增加一个属性,即当前标签所属的anchor索引
        '''
        ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
        '''
        targets.repeat(na, 1, 1).shape = [na,nt,6]
        ai[:, :, None].shape = [na,nt,1](None在list中的作用就是在插入维度1)
        ai[:, :, None] = [[[0],[0],[0],.....],
        	  			  [[1],[1],[1],...],
        	  	  		  [[2],[2],[2],...]]
        cat之后:
        targets.shape = [na,nt,7]
        targets = [[[image1,class1,x1,y1,w1,h1,0],
        			[image2,class2,x2,y2,w2,h2,0],
        			...
        			[imageN,classN,xN,yN,wN,hN,0]],
        			[[image1,class1,x1,y1,w1,h1,1],
        			 [image2,class2,x2,y2,w2,h2,1],
        			...],
        			[[image1,class1,x1,y1,w1,h1,2],
        			 [image2,class2,x2,y2,w2,h2,2],
        			...]]
        这么做是为了纪录每个label对应的anchor。
        '''
        targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2)  # append anchor indices
		
		'''
		定义每个grid偏移量,会根据标签在grid中的相对位置来进行偏移
		'''
        g = 0.5  # bias
        '''
        [0, 0]代表中间,
		[1, 0] * g = [0.5, 0]代表往左偏移半个grid, [0, 1]*0.5 = [0, 0.5]代表往上偏移半个grid,与后面代码的j,k对应
		[-1, 0] * g = [-0.5, 0]代代表往右偏移半个grid, [0, -1]*0.5 = [0, -0.5]代表往下偏移半个grid,与后面代码的l,m对应
		具体原理在代码后讲述
        '''
        off = torch.tensor([[0, 0],
                            [1, 0], [0, 1], [-1, 0], [0, -1],  # j,k,l,m
                            # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
                            ], device=targets.device).float() * g  # offsets

        for i in range(self.nl):
        	'''
        	原本yaml中加载的anchors.shape = [3,6],但在yolo.py的Detect中已经通过代码
        	a = torch.tensor(anchors).float().view(self.nl, -1, 2)
        	self.register_buffer('anchors', a) 
        	将anchors进行了reshape。
        	self.anchors.shape = [3,3,2]
        	anchors.shape = [3,2]
        	'''
            anchors = self.anchors[i]
            '''
            p.shape = [nl,bs,na,nx,ny,no]
            p[i].shape = [bs,na,nx,ny,no]
            gain = [1,1,nx,ny,nx,ny,1]
            '''
            gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]  # xyxy gain

            # Match targets to anchors
            '''
            因为targets进行了归一化,默认在w = 1, h =1 的坐标系中,
            需要将其映射到当前输出层w = nx, h = ny的坐标系中。
            '''
            t = targets * gain
            if nt:
                # Matches
                '''
                t[:, :, 4:6].shape = [na,nt,2] = [3,nt,2],存放的是标签的w和h
                anchor[:,None] = [3,1,2]
                r.shape = [3,nt,2],存放的是标签和当前层anchor的长宽比
                '''
                r = t[:, :, 4:6] / anchors[:, None]  # wh ratio
                '''
                torch.max(r, 1. / r)求出最大的宽比和最大的长比,shape = [3,nt,2]
                再max(2)求出同一标签中宽比和长比较大的一个,shape = [2,3,nt],之所以第一个维度变成2,
                因为torch.max如果不是比较两个tensor的大小,而是比较1个tensor某一维度的大小,则会返回values和indices:
                	torch.return_types.max(
						values=tensor([...]),
						indices=tensor([...]))
                所以还需要加上索引0获取values,
                torch.max(r, 1. / r).max(2)[0].shape = [3,nt],
                将其和hyp.yaml中的anchor_t超参比较,小于该值则认为标签属于当前输出层的anchor
                j = [[bool,bool,....],[bool,bool,...],[bool,bool,...]]
                j.shape = [3,nt]
                '''
                j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t']  # compare
                # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
                '''
                t.shape = [na,nt,7] 
                j.shape = [3,nt]
                假设j中有NTrue个True值,则
                t[j].shape = [NTrue,7]
                返回的是na*nt的标签中,所有属于当前层anchor的标签。
                '''
                t = t[j]  # filter

                # Offsets
                '''
                下面这段代码和注释可以配合代码后的图片进行理解。
                t.shape = [NTrue,7] 
                7:image,class,x,y,h,w,ai
                gxy.shape = [NTrue,2] 存放的是x,y,相当于坐标到坐标系左边框和上边框的记录
                gxi.shape = [NTrue,2] 存放的是w-x,h-y,相当于测量坐标到坐标系右边框和下边框的距离
                '''
                gxy = t[:, 2:4]  # grid xy
                gxi = gain[[2, 3]] - gxy  # inverse
                '''
                因为grid单位为1,共nx*ny个gird
                gxy % 1相当于求得标签在第gxy.long()个grid中以grid左上角为原点的相对坐标,
                gxi % 1相当于求得标签在第gxy.long()个grid中以grid右下角为原点的相对坐标,
                下面这两行代码作用在于
                筛选中心坐标 左、上方偏移量小于0.5,并且中心点大于1的标签
                筛选中心坐标 右、下方偏移量小于0.5,并且中心点大于1的标签          
                j.shape = [NTrue], j = [bool,bool,...]
                k.shape = [NTrue], k = [bool,bool,...]
                l.shape = [NTrue], l = [bool,bool,...]
                m.shape = [NTrue], m = [bool,bool,...]
                '''
                j, k = ((gxy % 1. < g) & (gxy > 1.)).T 
                l, m = ((gxi % 1. < g) & (gxi > 1.)).T  
                '''
                j.shape = [5,NTrue]
                t.repeat之后shape为[5,NTrue,7], 
                通过索引j后t.shape = [NOff,7],NOff表示NTrue + (j,k,l,m中True的总数量)
                torch.zeros_like(gxy)[None].shape = [1,NTrue,2]
                off[:, None].shape = [5,1,2]
                相加之和shape = [5,NTrue,2]
                通过索引j后offsets.shape = [NOff,2]
                这段代码的表示当标签在grid左侧半部分时,会将标签往左偏移0.5个grid,上下右同理。
                '''   
                j = torch.stack((torch.ones_like(j), j, k, l, m))
                t = t.repeat((5, 1, 1))[j]
                offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
            else:
                t = targets[0]
                offsets = 0
			
            # Define
            
            '''
            t.shape = [NOff,7],(image,class,x,y,w,h,ai)
            '''
            b, c = t[:, :2].long().T  # image, class
            gxy = t[:, 2:4]  # grid xy
            gwh = t[:, 4:6]  # grid wh
            '''
            offsets.shape = [NOff,2]
            gxy - offsets为gxy偏移后的坐标,
            gxi通过long()得到偏移后坐标所在的grid坐标
            '''
            gij = (gxy - offsets).long()
            gi, gj = gij.T  # grid xy indices

            # Append
            '''
            a:所有anchor的索引 shape = [NOff]
            b:标签所属image的索引 shape = [NOff]
            gj.clamp_(0, gain[3] - 1)将标签所在grid的y限定在0到ny-1之间
            gi.clamp_(0, gain[2] - 1)将标签所在grid的x限定在0到nx-1之间
            indices = [image, anchor, gridy, gridx] 最终shape = [nl,4,NOff]
            tbox存放的是标签在所在grid内的相对坐标,∈[0,1] 最终shape = [nl,NOff]
            anch存放的是anchors 最终shape = [nl,NOff,2]
            tcls存放的是标签的分类 最终shape = [nl,NOff]
            '''
            a = t[:, 6].long()  # anchor indices
            indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indices
            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
            anch.append(anchors[a])  # anchors
            tcls.append(c)  # class

        return tcls, tbox, indices, anch

在上述论文中的代码中包含了标签偏移的代码部分:

grid B中的标签在右上半部分,所以标签偏移0.5个gird到E中,A,B,C,D同理,即每个网格除了回归中心点在该网格的目标,还会回归中心点在该网格附近周围网格的目标。以E左上角为坐标(Cx,Cy),所以bx∈[Cx-0.5,Cx+1.5],by∈[Cy-0.5,Cy+1.5],而bw∈[0,4pw],bh∈[0,4ph]应该是为了限制anchor的大小。

3.1.3 _call__

代码和注释如下:

def __call__(self, p, targets):  # predictions, targets, model
        device = targets.device
        lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
        '''
        从build_targets函数中构建目标标签,获取标签中的tcls, tbox, indices, anchors
        tcls = [[cls1,cls2,...],[cls1,cls2,...],[cls1,cls2,...]]
        tcls.shape = [nl,N]
        tbox = [[[gx1,gy1,gw1,gh1],[gx2,gy2,gw2,gh2],...],
        
        indices = [[image indices1,anchor indices1,gridj1,gridi1],
        		   [image indices2,anchor indices2,gridj2,gridi2],
        		   ...]]
        anchors = [[aw1,ah1],[aw2,ah2],...]		  
        '''
        tcls, tbox, indices, anchors = self.build_targets(p, targets)  # targets

        # Losses
        '''
		p.shape = [nl,bs,na,nx,ny,no]
		nl 为 预测层数,一般为3
		na 为 每层预测层的anchor数,一般为3
		nx,ny 为 grid的w和h
		no 为 输出数,为5 + nc (5:x,y,w,h,obj,nc:分类数)
		'''
        for i, pi in enumerate(p):  # layer index, layer predictions
            '''
            a:所有anchor的索引
            b:标签所属image的索引
            gridy:标签所在grid的y,在0到ny-1之间
            gridy:标签所在grid的x,在0到nx-1之间
            '''
            b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
            '''
            pi.shape = [bs,na,nx,ny,no]
            tobj.shape = [bs,na,nx,ny]
            '''
            tobj = torch.zeros_like(pi[..., 0], device=device)  # target obj

            n = b.shape[0]  # number of targets
            if n:
            	'''
            	ps为batch中第b个图像第a个anchor的第gj行第gi列的output
            	ps.shape = [N,5+nc],N = a[0].shape,即符合anchor大小的所有标签数
            	'''
                ps = pi[b, a, gj, gi]  # prediction subset corresponding to targets

				'''
				xy的预测范围为-0.5~1.5
                wh的预测范围是0~4倍anchor的w和h,
                原理在代码后讲述。
				'''
                # Regression
                pxy = ps[:, :2].sigmoid() * 2. - 0.5
                pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
                pbox = torch.cat((pxy, pwh), 1)  # predicted box
                '''
                只有当CIOU=True时,才计算CIOU,否则默认为GIOU
                '''
                iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True)  # iou(prediction, target)
                lbox += (1.0 - iou).mean()  # iou loss

                # Objectness
                '''
                通过gr用来设置IoU的值在objectness loss中做标签的比重, 
                '''
                tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype)  # iou ratio

                # Classification
                if self.nc > 1:  # cls loss (only if multiple classes)
                    '''
               		ps[:, 5:].shape = [N,nc],用 self.cn 来填充型为[N,nc]得Tensor。
               		self.cn通过smooth_BCE平滑标签得到的,使得负样本不再是0,而是0.5 * eps
                	'''
                    t = torch.full_like(ps[:, 5:], self.cn, device=device)  # targets
                    '''
                    self.cp 是通过smooth_BCE平滑标签得到的,使得正样本不再是1,而是1.0 - 0.5 * eps
                    '''
                    t[range(n), tcls[i]] = self.cp 
                    '''
                    计算用sigmoid+BCE分类损失
                    '''
                    lcls += self.BCEcls(ps[:, 5:], t)  # BCE

                # Append targets to text file
                # with open('targets.txt', 'a') as file:
                #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
			'''
			pi[..., 4]所存储的是预测的obj
			'''
            obji = self.BCEobj(c, tobj)
            '''
			self.balance[i]为第i层输出层所占的权重,在init函数中已介绍
			将每层的损失乘上权重计算得到obj损失
			'''
            lobj += obji * self.balance[i]  # obj loss
            if self.autobalance:
                self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()

        if self.autobalance:
            self.balance = [x / self.balance[self.ssi] for x in self.balance]
        '''
        hyp.yaml中设置了每种损失所占比重,分别对应相乘
        '''
        lbox *= self.hyp['box']
        lobj *= self.hyp['obj']
        lcls *= self.hyp['cls']
        bs = tobj.shape[0]  # batch size

        loss = lbox + lobj + lcls
        return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()

在anchor回归时,对xywh进行了以下处理:

 # Regression
 pxy = ps[:, :2].sigmoid() * 2. - 0.5
 pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]

这和yolo.py Detect中的代码一致:

y = x[i].sigmoid()
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh

3.2 smooth_BCE

smooth_BCE是标签平滑的策略(trick),目的是防止过拟合。该函数将原本的正负样本1和0修改为1.0 - 0.5 * eps,和0.5 * eps。在ComputeLoss中定义,并在__call__中调用

def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
    # return positive, negative label smoothing BCE targets
    return 1.0 - 0.5 * eps, 0.5 * eps

3.3 BCEBlurWithLogitsLoss

BCEBlurWithLogitsLoss代码是BCE函数的一个替代,可以直接在ComputeLoss类中的__init__中代替传统的BCE函数

class BCEBlurWithLogitsLoss(nn.Module):
    # BCEwithLogitLoss() with reduced missing label effects.
    def __init__(self, alpha=0.05):
        super().__init__()
        self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none')  # must be nn.BCEWithLogitsLoss()
        self.alpha = alpha

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        pred = torch.sigmoid(pred)  # prob from logits
        # dx = [-1, 1]  当pred=1 true=0时(网络预测说这里有个obj但是gt说这里没有), dx=1 => alpha_factor=0 => loss=0
        # 这种就是检测成正样本了但是检测错了(false positive)或者missing label的情况 这种情况不应该过多的惩罚->loss=0
        dx = pred - true  # reduce only missing label effects
        # 如果采样绝对值的话 会减轻pred和gt差异过大而造成的影响
        # dx = (pred - true).abs()  # reduce missing label and false label effects
        alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
        loss *= alpha_factor
        return loss.mean()

3.4 FocalLoss 

FocalLoss损失函数的主要思路是:希望那些hard examples对损失的贡献变大,使网络更倾向于从这些样本上学习。防止由于easy examples过多,主导整个损失函数。优点:

  • 解决了one-stage object detection中图片中正负样本(前景和背景)不均衡的问题;
  • 降低简单样本的权重,使损失函数更关注困难样本;
class FocalLoss(nn.Module):
    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        super().__init__()
        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
        self.gamma = gamma  # 参数gamma  用于削弱简单样本对loss的贡献程度
        self.alpha = alpha  # 参数alpha  用于平衡正负样本个数不均衡的问题
        self.reduction = loss_fcn.reduction
        # focalloss中的BCE函数的reduction='None'  BCE不使用Sum或者Mean
        self.loss_fcn.reduction = 'none'  # required to apply FL to each element

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)    # 正常BCE的loss:   loss = -log(p_t)
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        pred_prob = torch.sigmoid(pred)  # prob from logits
        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = (1.0 - p_t) ** self.gamma
        # 公式内容
        loss *= alpha_factor * modulating_factor

        if self.reduction == 'mean':
            return loss.mean()
        elif self.reduction == 'sum':
            return loss.sum()
        else:  # 'none'
            return loss

References 

YOLOv5-6.x源码分析(八)---- loss.py-CSDN博客

 yolov5目标检测神经网络——损失函数计算原理 - 知乎

 YOLOV5代码详解之损失函数的计算_python_脚本之家

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/125392.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

docker 1.13存储路径修改

由于老版本docker还没有data-root配置&#xff0c;特记录一下老版本修改配置。 新版本配置修改参考&#xff1a;https://blog.csdn.net/tootsy_you/article/details/126933702 修改步骤 编辑docker.service服务文件 vim /usr/lib/systemd/system/docker.service在EXStart添加…

leaflet:个性化配置,利用Leaflet-Geoman绘制多种图形(136)

第136个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+leaflet中个性化配置,利用Leaflet-Geoman绘制多种图形。 灵活地配置Leaflet-Geoman的属性,可以产生各种美妙的绘图效果。 直接复制下面的 vue+leaflet源代码,操作2分钟即可运行实现效果 文章目录 示例效果配置方…

vue下使用Echarts5绘制基础图表

项目使用Vue3加Echarts5绘制的基本图表&#xff0c;图表自适应浏览器窗口大小 先上图&#xff0c;大屏小屏都可完美展示&#xff0c;纯属练手 一 先上图 1.任意缩放窗口的大小 2.平板 3.电脑 4.饼图 5.折线图 二 后上代码 <script lang"ts"> import {d…

苹果Ios系统app应用程序开发者如何获取IPA文件签名证书时需要注意什么?

今天呢想和大家介绍介绍苹果App开发者如何获取IPA文件签名证书的步骤和注意事项。对于苹果应用程序开发者而言&#xff0c;获取IPA文件签名证书是发布应用程序至App Store的重要步骤之一。签名证书能够确保应用程序的安全性和可信度&#xff0c;并使其能够在设备上正确运行。 …

uboot 和 内存地址

前言 在使用 uboot 升级的时候&#xff0c;有个疑问&#xff1a; 通过 tftp 下载的 bin 文件&#xff0c;我该暂存在哪段内存空间&#xff1f;换句话说&#xff0c;哪段内存空间可供我存放临时数据&#xff1f; 带着这个疑问&#xff0c;开启今天的 uboot 和 内存地址 研究之旅…

【2023】COMAP美赛数模中的大型语言模型LLM和生成式人工智能工具的使用

COMAP比赛中的大型语言模型和生成式人工智能工具的使用 写在最前面GitHub Copilot工具 说明局限性 团队指南引文和引用说明人工智能使用报告 英文原版 Use of Large Language Models and Generative AI Tools in COMAP ContestslimitationsGuidance for teamsCitation and Refe…

基于SpringBoot+Vue的体育馆管理系统

基于SpringBootVue的体育馆管理系统的设计与实现~ 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringBootMyBatisVue工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 主页 器材详情 登录界面 管理员界面 摘要 SpringBootVue的体育馆管理系统是…

【OpenCV实现图像:用OpenCV图像处理技巧之白平衡算法】

文章目录 概要加载样例图像统计数据分析White Patch Algorithm小结 概要 白平衡技术在摄影和图像处理中扮演着至关重要的角色。在不同的光照条件下&#xff0c;相机可能无法准确地捕捉到物体的真实颜色&#xff0c;导致图像呈现出暗淡、色调不自然或者褪色的效果。为了解决这个…

【经验模态分解】3.EMD模态分解算法设计与准备工作

/*** poject 经验模态分解及其衍生算法的研究及其在语音信号处理中的应用* file EMD模态分解算法设计与准备工作* author jUicE_g2R(qq:3406291309)* * language MATLAB* EDA Base on matlabR2022b* editor Obsidian&#xff08;黑曜石笔记软…

Linux安装DMETL4

Linux安装DMETL4 产品与环境介绍1 规划安装路径2 DM8安装路径2.1 达梦数据库程序安装路径2.2 初始化达梦数据库2.3 创建数据库用户名 DMETL 3 安装DMETL3.1 查看安装包与授权3.2 安装DMETL程序3.3 DMETL安装日志 4 启动DMETL5 DMETL连接数据库后会自动创建相关资源表6 达梦数据…

MySQL索引的数据结构

1. 索引及其优缺点 1.1 索引概述 MySQL官方对索引的定义为&#xff1a;索引&#xff08;Index&#xff09;是帮助MySQL高效获取数据的数据结构。 索引的本质&#xff1a;索引是数据结构。你可以简单理解为“排好序的快速查找数据结构”&#xff0c;满足特定查找算法。这些数据结…

【每日一题】咒语和药水的成功对数

文章目录 Tag题目来源解题思路方法一&#xff1a;排序二分 写在最后 Tag 【排序二分】【数组】【2023-11-10】 题目来源 2300. 咒语和药水的成功对数 解题思路 方法一&#xff1a;排序二分 我们首先对 points 进行升序排序&#xff0c;然后枚举 spells 中的 x&#xff0c;需…

IDEA 编译项目时报错:java: java.lang.OutOfMemoryError:GC overhead limit exceeded解决方法

1.问题简述 在Intellij IDEA下编译Java项目&#xff0c;报错&#xff1a;java.lang.OutOfMemoryError: …(此处忽略) GC overhead limit exceeded 2.问题分析 错误是发生在编译阶段&#xff0c;而不是运行阶段。通过查询相关资料发现&#xff0c; 1.idea编译Java项目使用的虚…

Adobe Photoshop 2020给证件照换底

1.导入图片 2.用魔法棒点击图片 3.点选择&#xff0c;反选 4.选择&#xff0c;选择并遮住 5.用画笔修饰证件照边缘 6. 7.更换要换的底的颜色 8.新建图层 9.使用快捷键altdelete键填充颜色。 10.移动图层&#xff0c;完成换底。

《开箱元宇宙》:认识香港麦当劳通过 The Sandbox McNuggets Land 的 Web3 成功经验

McNuggets Land 是 The Sandbox 于 2023 年发布的最受欢迎的体验之一。在本期的《开箱元宇宙》系列中&#xff0c;我们采访了香港麦当劳数位顾客体验暨合作伙伴资深总监 Kai Tsang&#xff0c;来了解这一成功案例背后的策略。 在不断发展的市场营销和品牌推广领域&#xff0c;不…

面试复习整理

redis持久化方式和原理 Redis持久化是指将Redis内存中的数据以某种形式保存到磁盘上&#xff0c;以保证在Redis重启后数据不会丢失。Redis支持两种持久化方式&#xff1a;RDB&#xff08;Redis DataBase&#xff09;和AOF&#xff08;Append Only File&#xff09;。 RDB持久…

深度学习之基于Python+OpenCV(DNN)性别和年龄识别系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 基于Python和OpenCV的深度学习性别和年龄识别系统是一种利用深度学习模型来自动识别人脸照片中的性别和年龄的技术。…

2013年108计网

第33题 在 OSI 参考模型中, 下列功能需由应用层的相邻层实现的是()A. 对话管理B. 数据格式转换C. 路由选择D. 可靠数据传输 很显然&#xff0c;题目所问的应用层的相邻层是表示层。该层实现与数据表示相关的功能。选项a中的对话管理属于会话层。选项c中的路由选择属于网络层。…

从内存优化视角再看 Glide 图片加载库

前置背景 Glide 作为常用的图片加载框架&#xff0c;框架层面已经对内存方面有不少优化&#xff0c;但作为一个图片框架&#xff0c;确保正确性一定是第一位的&#xff0c;因此在应用层还可以在适当的场景做一些额外的优化&#xff0c;当然你需要了解优化设置可能产生的问题。…

隧道技术的三种应用场景(IPv6,多播,VPN)

目录 1.IPv6的隧道技术 2.多播路由选择 (1)洪泛 (2)隧道技术 (3)基于核心的发现技术 3.隧道技术实现&#xff08;VPN&#xff09;虚拟专用网 1.IPv6的隧道技术 IPv6与IPv4的过渡技术中包含了IPv6的隧道技术&#xff1a; http://t.csdnimg.cn/wuvXY 2.多播路由选择 转发…