动态内存管理【下篇】

文章目录

  • ⚙️5.C/C++程序的内存开辟
  • ⚙️6.柔性数组
    • 🔔6.1.柔性数组的特点
    • 🔔6.2.柔性数组的使用

在这里插入图片描述

⚙️5.C/C++程序的内存开辟

在这里插入图片描述

C/C++程序内存分配的几个区域:

🔴1.栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。
🔴2.堆区(heap):一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。分配方式类似于链表。
🔴3.数据段(静态区)(static):存放全局变量、静态数据,程序结束后由系统释放。
🔴4.代码段:存放函数体(类成员函数和全局函数)的二进制代码。

🔴实际上普通的局部变量是在栈区分配空间的,栈区的特点是上面创建的变量出了作用域就销毁。
🔴但是被static修饰的变量存放在数据段(静态区),数据段的特点是在上面创建的变量,直到程序结束才销毁,所以生命周期变长。

⚙️6.柔性数组

🚩也许你从来没有听说过**柔性数组(flexible array)**这个概念,但是它确实是存在的。
🚩C99中,结构体中的最后一个元素允许是未知大小的数组,这就叫做 柔性数组成员

🌰例如👇

//struct S
//{
//	int n;
//	char c;
//	int arr[];//-->柔性数组成员//大小可以是未知的
//};         

struct S
{
	int n;
	char c;
	int arr[0];//-->柔性数组成员
};

int main()
{
	printf("%d\n", sizeof(struct S));

	return 0;
}

🔔6.1.柔性数组的特点

🔴结构中的柔性数组成员前面必须至少一个其他成员

struct SA
{
	int arr[0];//柔性数组成员
};
struct SA
{
	int arr[];//柔性数组成员
};

🚨这样写绝对不可以!

🔴sizeof返回的这种结构大小不包括柔性数组的内存

struct S
{
	int n;
	char c;
	int arr[0];//-->柔性数组成员
};

int main()
{
	printf("%d\n", sizeof(struct S));

	return 0;
}

在这里插入图片描述

🔴包含柔性数组成员的结构用malloc()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<errno.h>
struct S
{
	int n;
	char c;
	int arr[0];//-->柔性数组成员
};
                                                                                               
int main()
{ 
	//                                     8          +           40
	struct S* ps = (struct S*)malloc(sizeof(struct S) + 10 * sizeof(int));
	if (ps == NULL)
	{
		printf("%s\n", strerror(errno));
		return 1;
	}

	//使用
	ps->n = 100;
	ps->c = 'w';
	int i = 0;
	for (i = 0; i < 10; i++)
	{
		ps->arr[i] = i;
	}
	for (i = 0; i < 10; i++)
	{
		printf("%d ", ps->arr[i]);
	}
	//释放
	free(ps);
	ps = NULL;

	return 0;
}

在这里插入图片描述

🔔6.2.柔性数组的使用

🚩柔性数组方案 ---- 方案1:👇

struct S
{
	int n;
	char c;
	int arr[0];//-->柔性数组成员
};
                                                                                               
int main()
{ 
	//                                     8          +           40
	struct S* ps = (struct S*)malloc(sizeof(struct S) + 10 * sizeof(int));
	if (ps == NULL)
	{
		printf("%s\n", strerror(errno));
		return 1;
	}

	//使用
	ps->n = 100;
	ps->c = 'w';
	int i = 0;
	for (i = 0; i < 10; i++)
	{
		ps->arr[i] = i;
	}
	for (i = 0; i < 10; i++)
	{
		printf("%d ", ps->arr[i]);
	}

	//调整arr数组大小
	struct S*ptr = (struct S*)realloc(ps, sizeof(struct S) + 20 * sizeof(int));
	if (ptr == NULL)
	{
		printf("%s\n", strerror(errno));
		return 1;
	}
	else
	{
		ps = ptr;
	}
	//使用
	
	//释放
	free(ps);
	ps = NULL;

	return 0;
}

在这里插入图片描述
🚩结构体中指针方案 ---- 方案2:👇

struct S
{
	int n;
	char c;
	int* arr;
};
int main()
{
	struct S* ps = (struct S*)malloc(sizeof(struct S));
	if (ps == NULL)
	{
		perror("malloc");
		return 1;
	}
	int* ptr = (int*)malloc(10 * sizeof(int));
	if (ptr == NULL)
	{
		perror("malloc2");
		return 1;
	}
	else
	{
		ps->arr = ptr;
	}
	//使用
	ps->n = 100;
	ps->c = 'w';
	int i = 0;
	for (i = 0; i < 10; i++)
	{
		ps->arr[i] = i;
	}
	//打印
	for (i = 0; i < 10; i++)
	{
		printf("%d ", ps->arr[i]);
	}

	//扩容 - 调整arr大小
	int* tmp = realloc(ps->arr, 20 * sizeof(int));
	if (tmp == NULL)
	{
		perror("realloc");
		return 1;
	}
	else
	{
		ps->arr = tmp;
	}
	//使用

	//释放
	free(ps->arr);
	ps->arr = NULL;
	free(ps);
	ps = NULL;

	return 0;
}

在这里插入图片描述
👆这段代码也同样可以实现柔性数组的功能👆

🔴方案1:
malloc 1次,free 1次,容易维护空间,不易出错
malloc 次数少,内存碎片就会较少,内存的使用率就较高一些

在这里插入图片描述🔴方案2:
malloc 2次,free 2次,维护难度加大,容易出错
malloc 次数多,内存碎片就会增多,内存的使用率就下降了

typedef struct st_type
{
	int i;
	int a[0];//柔性数组成员

}type_a;
//代码1
int i = 0;
type_a* p = (type_a*)malloc(sizeof(type_a) + 100 * sizeof(int));
//业务处理
p->i = 100;
for (i = 0; i < 100; i++)
{
	p->a[i] = i;
}
free(p);

👆这样柔性数组a,相当于获得了100个整型元素的连续空间

//代码2
typedef struct st_type
{
	int i;
	int* p_a;
}type_a;
type_a* p = (type_a*)malloc(sizeof(type_a));
p->i = 100;
p->p_a = (int*)malloc(p->i * sizeof(int));
//业务处理
for (i = 0; i < 100; i++)
{
	p->p_a[i] = i;
}
//释放空间
free(p->p_a);
p->p_a = NULL;
free(p);
p = NULL;

👆上述代码1和代码2可以完成同样的功能,但是方法1的实现有两个好处:

🚩第一个好处是:方便内存释放

如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。

🚩第二个好处是:这样有利于访问速度

连续的内存有益于提高访问速度,也有益于减少内存碎片。(其实,我个人觉得也没多高了,反正你跑不了要用做偏移量的加法来寻址)

总结🥰
以上就是 动态内存管理【下篇】 的内容啦🥳🥳🥳🥳
本文章所在【C语言知识篇】专栏,感兴趣的烙铁可以订阅本专栏哦🥳🥳🥳
前途很远,也很暗,但是不要怕,不怕的人面前才有路。💕💕💕
小的会继续学习,继续努力带来更好的作品😊😊😊
创作写文不易,还多请各位大佬uu们多多支持哦🥰🥰🥰

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/12515.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

春秋云境:CVE-2022-30887(文件上传漏洞)

目录 一.题目 二.蚁剑方式 三.POC方式 一.题目 该CMS中php_action/editProductImage.php存在任意文件上传漏洞&#xff0c;进而导致任意代码执行。 进入页面&#xff1a;登录页面 随意输入用户名和密码&#xff1a;admingmail.com admin 用于burp抓包&#xff1a; burp抓包…

Git入门指南(手把手教学)

Git入门指南 一、什么是Git二、Git的安装下载三、git的简单实践1.创建git仓库2.Windows上生成公钥以绑定GitHub仓库3.写一个Helloworld 四、帮助学习的网站 一、什么是Git Git是一种分布式版本控制系统&#xff0c;它是由Linus Torvalds为了管理Linux内核开发而开发的。与中心化…

MySQL数据库学习笔记(七)实验课三之拼命的李绿

一来就是实验课三了&#xff0c;那么实验课二呢&#xff1f;实验课二是装配mysql环境那些东西&#xff0c;而我们在前面的笔记中也有关于配置环境的&#xff0c;所以在这里就不再赘述了。 文章目录 注意&#xff1a;1&#xff0c;本地文件导入2&#xff0c;数据范围3&#xff…

故障重现, JAVA进程内存不够时突然挂掉模拟

背景&#xff0c;服务器上的一个JAVA服务进程突然挂掉&#xff0c;查看产生了崩溃日志&#xff0c;如下&#xff1a; # Set larger code cache with -XX:ReservedCodeCacheSize # This output file may be truncated or incomplete. # # Out of Memory Error (os_linux.cpp:26…

高比例可再生能源电力系统的调峰成本量化与分摊模型(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

学习着编写了一款chrome小插件

背景介绍 半年前有幸分享了一下浏览器开发者工具的技术分享&#xff0c;当时的PPT在写至最后处总感觉理论讲解多于代码分享&#xff0c;于是琢磨着编写一下相关的代码&#xff0c;在经过一番苦思冥想后最终锁定了浏览器插件编写的实现上&#xff0c;所以在经过一番知识百科后&…

4.9、字节序

4.9、字节序 1.简介2.字节序举例3.判断电脑存储方式代码 1.简介 现代 CPU 的累加器一次都能装载&#xff08;至少&#xff09;4 字节&#xff08;这里考虑 32 位机&#xff09;&#xff0c;即一个整数。那么这 4字节在内存中排列的顺序将影响它被累加器装载成的整数的值&#x…

通达信欧奈尔RPS指标公式编写和设置方法(完全版)

通达信欧奈尔RPS指标公式的编写和设置较为复杂&#xff0c;对于初学者来说可能具有一定挑战性。在编写口袋支点公式时&#xff0c;需要使用RPS指标公式作为基础条件&#xff0c;因此有必要先了解其编写和设置方法。 一、上市一年以上选股 首先选出上市一年以上的股票&#xff…

属性文法和语法制导翻译

前言 前面通过词法分析&#xff0c;语法分析&#xff0c;DFA最后接受了一个输入实际上是理解了某一句编程语句&#xff0c;编译器的角色是将高级程序语言编译&#xff08;翻译&#xff09;为汇编代码&#xff0c;通过词法、语法分析编译器可以理解高级程序语言了&#xff0c;那…

数据结构和算法学习记录——层序遍历(层次遍历)、二叉树遍历的应用(输出二叉树中的叶节点、求二叉树的高度、二元运算表达式树及其遍历、由两种遍历序列确定二叉树)

目录 层序遍历 思路图解 代码实现 二叉树遍历的应用 输出二叉树中的叶节点 代码实现 求二叉树的高度 思路图解 代码实现 二元运算表达式树及其遍历 由两种遍历序列确定二叉树 层序遍历 层序遍历可以通过一个队列来实现&#xff0c;其基本过程为&#xff1a; 先根…

【从零开始学Skynet】基础篇(七):Mysql数据库常用API

在上一篇中我们完成了对Mysql数据库的准备工作之后&#xff0c;这一篇我们写一个程序测试一下。 1、Mysql API 在写程序之前&#xff0c;我们先学习一下Mysql数据库常用API的使用&#xff1a; API说明mysql.connet(args)连接数据库&#xff0c;参数args是一个Lua表&#xff0c…

【敬伟ps教程】平移、缩放、移动、选区

文章目录 平移抓手工具旋转抓手 缩放工具移动工具详解选区选区工具详解 平移 抓手工具 当打开一张大图时&#xff0c;可以通过修改底部的百分比或使用抓手工具&#xff08;H或在任何时候按住空格键来使用抓手工具&#xff09;来查看更多细节 使用抓手工具时滚动所有打开的文…

仿真创新大赛—国三省一 智能鱼缸(proteus)(stm32)

⏩ 大家好哇&#xff01;我是小光&#xff0c;嵌入式爱好者&#xff0c;一个想要成为系统架构师的大三学生。 ⏩去年下半年参加了全国仿真创新大赛&#xff0c;也是取得了国赛三等奖&#xff0c;省赛一等奖的好成绩。 ⏩本篇文章对我们的参赛作品《智能鱼缸》做一个简介。 ⏩感…

【前缀和】

目录 知识框架No.0 筑基No.1一维前缀和No.2 二维前缀和题目来源&#xff1a;Acwing-796. 子矩阵的和 No.1 普通前缀和题目来源&#xff1a;牛客网-NC14556&#xff1a;数圈圈题目来源&#xff1a;牛客网-NC14600&#xff1a;珂朵莉与宇宙题目来源&#xff1a;牛客网-NC21195 &a…

优化 Kafka 的生产者和消费者

背景 如今&#xff0c;分布式架构已经成为事实上的架构模范&#xff0c;这使得通过 REST API 和 消息中间件来降低微服务之间的耦合变得必然。就消息中间件而言&#xff0c;Apache Kafka 已经普遍存在于如今的分布式系统中。Apache Kafka 是一个强大的、分布式的、备份的消息服…

matplotlib的配色(随机颜色函数,各种渐变色,彩虹色)

也是画图的时候经常会遇到的问题&#xff0c;什么颜色好看&#xff1f; 先直接上一个配色表&#xff1a; plt官网&#xff1a;List of named colors — Matplotlib 3.8.0.dev898g4f5b5741ce documentation 需要什么颜色传入就行了。 例如我下面画一个柱状图&#xff0c;自己选…

云擎未来,智信天下 | 2023移动云大会来了!

新三年&#xff0c;新征程 2023年作为新三年开局之年 移动云又将以怎样的 全新品牌形象、全新战略规划 向“一流云服务商”战略目标勇毅前行&#xff1f; 答案就在这里&#xff1a; 2023移动云大会&#xff0c;官宣定档&#xff01; 2023.4.25 - 4.26 苏州金鸡湖国际会…

Android 中的混音器 AudioMixer 实现分析

Android framework 的音频处理模库 libaudioprocessing (位于 frameworks/av/media/libaudioprocessing) 提供了混音器组件 AudioMixer&#xff0c;它主要用在 audioflinger 里&#xff0c;用来将多路音频源数据混音&#xff0c;以方便送进音频设备播放出来。 音频混音操作本身…

8.2 正态总体的参数的检验

学习目标&#xff1a; 如果我要学习正态总数的参数检验&#xff0c;我会按照以下步骤进行学习&#xff1a; 学习正态分布的基本知识&#xff1a;正态分布是统计学中非常重要的概率分布之一&#xff0c;掌握其基本知识包括概率密度函数、期望值、方差、标准差等是非常重要的。 …

最佳实践:Android应用中的网络请求和数据缓存

最佳实践&#xff1a;Android应用中的网络请求和数据缓存 网络请求在Android应用中的重要性 在现代移动应用中&#xff0c;网络请求扮演着重要的角色&#xff0c;涉及到数据的获取、上传、更新等功能。网络请求在Android应用中具有关键地位&#xff0c;对于提供优秀的用户体验和…